Instruction to Evolutionary Constructor script language

The software package "Evolutionary constructor" (EC) provides modeling scenarios with the use of the special script language.

Any scenario of EC model consists of two consequent sections:

- 1) Model declaration section;
- 2) Calculation section.

The comment lines may begin with the following symbols: // (C-style), ! (Fortran-style), and % (Matlab-style). The script language is *case insensitive*.

Model declaration section

This section starts with the declare statement and ends with the end declare statement. The other statements setting up model parameters in the declaration section are shown in the table below (synonyms are also shown if available):

Statement	Description/model parameter set up	Example
volume	Environmental volume	volume = 1e-1
flow	Flow rate (from 0 to 1.0)	flow = 0.1
nonspec (ns)	Number of non-specific substrates in the model	nonspec = 2
spec (ss)	Number of specific substrates in the model	spec = 3
init_ns	Initial concentrations of non-specific	init_ns = 1.5e-3,
(substrates_ns)	substrates in environment (list)	2e-3
init_ss (substrates_ss)	Initial concentrations of specific substrates in environment (list of comma-separated values)	init_ss = 0.1,0.2,0.3
inflow_ns (comsub)	Concentration of non-specific sub- strates in the in-flow (list of comma- separated pairs – <i>substrate num-</i> <i>ber:substrate concentration</i>)	inflow_ss = 1:0.1, 4:0.2
mut_probability	Mutation probability	mut_prob = 1e-8

Table 1. Model declaration statements

(mut_prob)		
hgt_probability	Horizontal gene transfer probability	hat prob = 1e-10
(hgt_prob)		
population	Opens the population declaration	non = 1
(pop, p)	section (see Table 2)	pob – I
end population	Closes the population declaration	end non
(end pop, end p)) section (see Table 2)	end pop

Each population in the declaration section is given by the particular subsection. That subsection is opened with population (pop, p) statement, and is closed with end_population (end pop, end p) statement. The only parameter of pop statement is the number of population. The statements setting up population's parameters are listed in the Table 2:

Table 2. Population declaration statements

Statement	Description/model parameter set up	Example
size	Initial size of a population	size = 4e+8
increaser (strategy, trophic)	Trophic strategy of a population (ar- gument is the name of strategy, for example, rubel, liebig, inhi- bitory, chaotic etc.)	increaser = rubel
k_death	Death parameter	$k_{death} = 1e-30$
k_flow	Flow parameter	$k_{flow} = 0.05$
cprod	Synthesis ratio for specific products	cprod = 1e+5
ccons_nsp (ccons_ns)	Utilization ratio for non-specific substrates	ccons_nsp = 1e+7
ccons_sp (ccons_ss)	Utilization ratio for specific substrates	ccons_sp = 1e+5
genes_n	Adds a new gene of non-specific substrate utilization to the genera- lized genome of a population. Argu- ments: <i>substrate number : list of al-</i> <i>leles values : list of alleles frequen-</i> <i>cies in a population</i>	<pre>genes_n = 1; allele_values:3,5,6; allele_concentrations: 0.1,0.6,0.3</pre>

	Adds a new gene of specific sub-	
genes_s	strate utilization to the generalized	genes_s = 2;
	genome of a population. Arguments:	<pre>allele_values:3,5,6;</pre>
	substrate number : list of alleles val-	allele_concentrations:
	ues : list of alleles frequencies in a	0.1,0.6,0.3
	population	
genes_p	Adds a new gene of specific sub-	
	strate synthesis to the generalized	genes_p = 3;
	genome of a population. Arguments:	<pre>allele_values:3,5,6;</pre>
	substrate number : list of alleles val-	allele_concentrations:
	ues : list of alleles frequencies in a	0.1,0.6,0.3
	population	

The actual values of traits determining corresponding utilization rates, i.e. r_i and c_i , (see Trophic strategies description) are calculated as a quotient of the following parameters: fixed component – *utilization ratio* (ccons_ns, ccons_ss) and variable components taken from allele values list in genes n and genes s statements.

The actual values of traits determining corresponding synthesis rates, i.e. d_i (see Metabolism simulation description) are calculated as a product of analogical parameters: fixed component – *synthesis ratio* (cprod), and variable one set up with genes_p statement.

The example below demonstrates the description of a monomorphic (with relation to utilization of the substrate S1) population, the actual c_1 parameter value of which is equal to $2 \cdot 10^{-5}$ (it means that one cell division takes $2 \cdot 10^{5}$ of substrate molecules):

```
pop = 1
    ccons_sp = 1e+5
    genes_s=1;allele_values:2;allele_concentrations:1.0
    // Other parameters of the population
end pop
```

Model calculation section

Calculation section starts immediately after end declare statement. The statements of this section are listed in the table below:

Statement	Description/model parameter set up	Example
iterate	Iterate n simulation steps (n is ar-	
	gument). Stochastic operations	itorato - 100
	(mutations, horizontal transfer etc.)	iterate - 400
	are not permitted.	
	Iterate <i>n</i> simulation steps (<i>n</i> is ar-	
stochastic	gument). Stochastic operations are	
(s itorato)	permitted - possible events are re-	stochastic = 400
	gulated by corresponding probabili-	
	ties.	
	Perform mutation in one (or more)	
mutation	cells in a population. Detailed de-	Description is in the
(mut)	scription of this statement is in the	text below
	text below.	
	Perform horizontal transfer of a	
horizon-	gene from a cell of donor popula-	Description is in the
tal_transfer	tion into a cell of acceptor popula-	text below
(ht, hgt)	tion. Detailed description of this	CCAC DCIOW
	statement is in the text below.	
	Change the concentration of non-	
set_nssc	specific substrate in the in-flow.	set ns=1 • 0 5
(set_ns)	Arguments: substrate number: new	
	concentration	
set_flow	Change flow rate (the argument	sot flow $= 0.2$
(set_f)	range is from 0 to 1)	Sec_110w - 0.2
	Fix concentration(s) of some sub-	
	strate(s) in environment on a cer-	
buffer_on	tain level regardless of flow or	<pre>buffer_on=S:1:0.7</pre>
	populations action. Arguments:	
	substrate type (possible values N,	

Table 3 Model calculation statements

	S): substrate number : concentra-	
	tion	
	Cancel buffer_on command.	
buffer_off	Arguments: substrate type (possible	buffer_off=S:1
	values N, S): substrate number	
	Set series of in-flow concentrations	
	for a certain non-specific substrate	
	alternating in time periods, and du-	ns_pattern = 1;
ns_pattern	rations of those periods. Argu-	<pre>concentrations:0.1,2,0;</pre>
	ments: substrate number; list of	durations:10,20,300
	concentrations; list of duration pe-	
	riods	

Mutation statement

The statement mutation (mut) causes the mutation in cell(s) of a population:

```
mutation= pop:1; gene_type:n; sub_num:0; from:1.0; to:7.0;
count:0.01
```

where

pop – population number;

gene type – type of a gene to be mutated (possible values: *n*, *s*, *p*);

sub num – number of substrate corresponding with the mutant gene;

from – initial trait value (only cells having trait of this particular value will mutate);

to – mutant trait value (mutant cells will have this trait value);

count (unnecessary parameter) – fraction of mutants in a whole population. If this parameter missed, the fraction is chosen automatically to get the minimal size of the mutant subpopulation (acceptable with regard to computational accuracy or special parameter).

Horizontal_transfer statement

The statement horizontal_transfer (ht, hgt) causes the horizontal transfer of gene(s) from a cell of donor population into a cell of acceptor population:

hgt=acceptor:2; donor:1; gene_type:n; sub_num:1,2; gene_type:s; sub_num:1,3,4,..; p_size:1e+1; allele:greatest|lowest:1

where

acceptor - acceptor population number;

donor – donor population number;

gene type - type of transferred gene(s) (possible values: n, s, p);

sub num – list of numbers of transferred genes;

p_size (unnecessary parameter) – subpopulation size (number of cells incurred horizontal gene transfer). If this parameter missed, the automatically set size is the minimal with regard to computational accuracy or special parameter;

allele (unnecessary parameter) – set the *rule* of allele *selection* (for the transfer) and the number of allele in cell(s) (in the order defined with selection rule) of the donor population. Possible values for selection rule: *greatest* or *lowest*, determine, whether maximal or minimum trait-valued alleles will be transferred. If this parameter missed, the most presented (in the donor population) allele will be selected for transfer.

Note: it is possible to transfer genes of all types simultaneously per one horizontal gene transfer. To achieve this it is necessary to specify lists of transferred genes in such a manner: point out gene type followed by list of genes numbers, then another gene type followed by list of genes numbers etc (see the example above).