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ABSTRACT

ARTICLE HISTORY
Received 6 November 2017

Introduction: Selective serotonin reuptake inhibitors (SSRIs) are the most effective and most used
antidepressant drugs. Acting by inhibiting serotonin (5-HT) transporter, SSRIs display a typical 3-4-week
delay in their therapeutic effects, with nearly 40% of depressed patients remaining treatment-resistant.
Recent evidence suggests complex interplay between 5-HT receptors and key proteins of 5-HT meta-
bolism in molecular mechanisms of such delay and resistance to SSRIs.

Area covered: This paper concentrates on the interplay between 5-HT receptors in the delay of
therapeutic effect of SSRIs, and the interaction between tryptophan hydroxylase 2 and 5-HT transporter
in the SSRI resistance. Specifically, it discusses: (1) the data on the association between antidepressant
drug efficacy and genetically defined characteristics of key proteins in the 5-HT signaling (TPH2, MAOA,
SERT and 5-HT;5 receptor), (2) the effect of dimerization of 5-HT, and 5-HT;, receptors on the
internalization and functioning of 5-HT;, presynaptic receptors, (3) the role of Tph2 deficiency in the
resistance to SSRIs treatment. We shift the emphasis from individual proteins to their interactions in
explaining antidepressant action of SSRI.

Expert opinion: These interactions should be considered when developing more effective antidepres-
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sant drugs as well as for predicting and improving the efficacy of antidepressant therapies.

1. Introduction

Depressive disorders are among the leading causes of mental
disability in industrial countries [1-4] with about 12% of men and
21% of women having a life-time risk of depression [5,6].
Depression is associated with increased risk of suicide [7] and is
highly comorbid with other mental disorders [8-10].
Antidepressant drugs occupy leading position in the global drug
market [11]. Selective serotonin (5-HT) reuptake inhibitors (SSRIs),
such as fluoxetine, citalopram, and paroxetine, are the most com-
monly used antidepressant drugs [12—19]. SSRIs were also found to
be efficacious drugs for several anxiety disorders [20] and obses-
sive-compulsive disorder (OCD) [21]. However, two main problems
are recognized concerning efficacy of SSRIs action. First, prolonged
(2-4-week) delay in the onset of their therapeutic action [22].
Second, about 40% of patients with depressive, anxiety disorders
and OCD remains refractory to the treatment [23-26]. Thus, the
understanding of the molecular mechanism of action and efficacy
of SSRIs becomes an important biomedical problem.

Recent studies indicate the growing recognition of multiple
genetic, neuronal, and endocrine factors in resistance to anti-
depressants [24,25,27]. Therefore, the search for biomarkers

associated with sensitivity to antidepressant drugs may help
select optimal antidepressant for therapy and predict its ther-
apeutic effect.

Two powerful genetic tools for studying the genetics of anti-
depressant drugs efficacy include genome-wide association stu-
dies (GWAS) and the candidate genes approach. GWAS has been
applied in several large-scale psychopharmacological projects,
including the Genome-Based Therapeutic Drugs for Depression
(GENDEP), the Munich Antidepressant Response Signature (MARS),
and the Sequenced Treatment Alternatives to Relieve Depression
(STAR*D). These studies examined over 1,200,000 genetic markers
(single-nucleotide polymorphisms, SNPs) [28,29] but failed to iden-
tify reliable predictors of antidepressants treatment outcome,
although they did present modest direct evidence that common
genetic variation contributes to individual differences in response
to antidepressant drugs treatment [30].

Widely accepted, the 5-HT hypothesis of depression links the
risk of depression to deficiency of 5-HT neurotransmission in the
brain [31,32]. The main argument for this hypothesis is that most
clinically effective antidepressant drugs increase 5-HT neuro-
transmission in the brain by blocking 5-HT degradation or
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Article highlights

e Understanding of the molecular mechanisms underlying the delay of
therapeutic effect and resistance to SSRIs treatment is important
biomedical problems.

e Recent evidence suggests a key role of complex interplay between
the key proteins of 5-HT metabolism and reception in the molecular
mechanisms of the therapeutic delay and resistance to SSRIs.

o Dimerization of 5-HT1A and 5-HT7 on the presynaptic membrane of
5-HT neurons decreases functional activity of 5-HT1A autoreceptor,
attenuates the feedback inhibition of 5-HT secretion and can
decrease delay of therapeutic effect of SSRIs.

¢ |Interplay between 5-HT transporter and key enzyme of 5-HT synth-
esis, tryptophan hydroxylase 2, defines the level of 5-HT in the brain.
Prolonged blockade of transporter with SSRIs decreases the brain 5-
HT concentration in individuals with genetically defined low trypto-
phan hydroxylase 2 activity. Tph2 gene polymorphism attenuates the
effect of SSRIs treatment.

reuptake, which elevates 5-HT levels in the synaptic cleft
[13,14,33]. All genes encoding the enzymes of 5-HT metabolism,
5-HT transporter (5-HTT) and 5-HT receptors are considered as
candidate genes associated with antidepressants efficacy.
However, clinical data linking antidepressant drugs efficacy
with polymorphisms in these genes remain conflicting [34-37].
A probable cause for these discrepancies can be that the
commonly used genetic approaches are generally targeting only
individual genes, rather than an interaction between two or more
biomarkers. At the same time, mounting evidence suggests com-
plex interplay between key enzymes, receptors and 5-HTT in
modulating functional activity of central 5-HT system [38,39].
Here, we discuss the interplay between several key proteins of
the 5-HT system (including enzymes of 5-HT synthesis and meta-
bolism, as well as 5-HTT and 5-HT receptors) in sensitivity and
resistance to SSRIs, and in the delay of their therapeutic action.

2. Central 5-HT system and SSRIs

The brain 5-HT system is one of the most expansive neurotrans-
mitter systems. The cell bodies of 5-HT neurons are localized in the
midbrain, while their terminals innervate all brain regions (except
some areas of the cerebellum), with every cortical neuron receiving
about 200 serotonergic contacts [40,41]. 5-HT is synthesized from
the essential amino acid L-tryptophan by two brain enzymes,
tryptophan hydroxylase 2 (TPH2) and aromatic L-amino acid dec-
arboxylase (AAAD) (Figure 1). While AAAD is the widespread and
nonspecific enzyme [42], TPH2 is the rate-limiting and the only
specific enzyme of 5-HT synthesis and metabolism in the brain
(with TPH1 playing a similar role in the periphery) [43,44]. An
irreversible TPH1/TPH2 inhibitor, p-chlorophenylalanine [45,46],
and TPH2 gene knockout [47-49] dramatically reduce 5-HT con-
centration in the brain. Synthesized 5-HT is stored in synaptic
vesicles, transported to presynaptic terminals, and released in the
synaptic cleft. The 5-HT secretion is regulated by the feedback
mechanism including presynaptic 5-HT;, and 5-HT; autorecep-
tors on the cell body of 5-HT neuron [50-52]. The secreted 5-HT
interacts with 14 types of currently known 5-HT receptors with four
different mechanisms of signal transduction [50,53].

Released 5-HT is removed from the synaptic cleft by the plasma
membrane 5-HT transporter (5-HTT), which takes it into the pre-
synaptic 5-HT neurons [54-56], where the neurotransmitter can

either storage in the vesicles or be oxidized to 5-hydroxyindolea-
cetic acid (5-HIAA) by the monoamine oxidase A (MAOA) [57,58]
(Figure 1). Therefore, 5-HTT, TPH2, presynaptic 5-HT, 5 receptors, 5-
HTT and MAOA regulate 5-HT concentration and 5-HT signaling in
the brain. Moreover, 5-HTT and MAOA and are the molecular
targets for the majority of antidepressant drugs.

3. Delay of the therapeutic effect of SSRIs treatment

Although SSRIs inhibit 5-HTT in minutes, their therapeutic
effect usually appears several weeks later. Principal role of
presynaptic 5-HT;, autoreceptors desensitization in such
delayed SSRI therapeutic effect has been widely recognized
[59-62] (Figure 2). The 5-HT, 5 receptor, which is located both
pre- and postsynaptically, is an important regulator of neuro-
nal development, plasticity [63,64], and 5-HT signaling [50].
The 5-HT, 4 receptor has also been implicated in various phy-
siological functions [65] and pathogenesis of depression, anxi-
ety, suicide, and schizophrenia [66-70].

Activation of 5-HT;, autoreceptors by endogenous 5-HT
attenuates 5-HT neuronal firing rate, as well as 5-HT release,
thereby providing an effective feedback mechanism to control
5-HT concentration in the synaptic cleft. Analysis of postmortem
brains of depressed subjects revealed upregulation of 5-HT;
autoreceptors in the raphe area, with no changes in postsynap-
tic 5-HT,p receptors [71]. Chronic antidepressant treatment
downregulates the 5-HT autoreceptors and suppresses the
negative feedback mechanism in the regulation of 5-HT system
(Figure 2). Therefore, a key element responsible for the onset of
SSRI therapeutic action is progressive desensitization of 5-HT;
autoreceptors, and the time course taken for this process deter-
mines the delay of antidepressant treatment effect [59-61]. The
problem, however, is the unexplained selective desensitization
by chronic SSRI treatment of 5-HT;, autoreceptors, but not
postsynaptic 5-HT;, receptors.

There were three hypothetical mechanisms of 5-HT; 5 recep-
tor downregulation: (1) the internalization of 5-HT, 5 receptors,
(2) reversible violation of the conjugation between the receptor
and the Gj-protein, or (3) destruction of 5-HT,5 receptors.
Recently, a novel molecular mechanism of the downregulation
of 5-HT, 4 receptor activity has been discovered. It was shown
that 5-HT; 5 receptor, as other G-coupled receptors, could form
homodimer with another 5-HT;, molecule as well as hetero-
dimer with other kinds of 5-HT receptor molecule [72,73].
Importantly, heterodimerization of 5-HT; 5 and 5-HT; receptors
changed functional activity of 5-HT, 4 receptors [74].

4. Possible role of 5-HT,, and 5-HT, receptors
heterodimerization in anxiety and depression

The 5-HT; receptor, one of the least studied members of the 5-HT
receptor is coupled to Gs-protein and activates adenylyl cyclase
[75-77]. The brain 5-HT;, receptors are mostly expressed in the
limbic structures and raphe nuclei [78]. Highly co-localized
5-HT; A and 5-HT; receptors can form heterodimers, and this het-
erodimerization facilitates the internalization and reduces func-
tional activity of 5-HT;, receptors [74,79]. Functional analysis of
dimerization between 5-HT;, and 5-HT; receptors reveals that
hetero-oligomers decrease 5-HT;, receptor-mediated activation
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Figure 1. Summary of the 5-HT synthesis, turnover and metabolism in the brain. In the presynaptic neuron, tryptophan hydroxylase 2 (TPH2) hydroxylates
L-tryptophan to 5-hydroxytryptophan (5-HTP), followed by decarboxylation of 5-HTP by L-aromatic amino acids decarboxylase (AAAD) to 5-HT. The synthesized 5-HT
is deposited in synaptic vesicles, which are transported to the neuron endings. After depolarization 5-HT is released into the synaptic cleft. The presynaptic 5-HT1A
and 5-HT7 autoreceptors are interact to regulate the 5-HT secretion. The secreted 5-HT interacts with numerous postsynaptic 5-HT receptors. 5-HT transporter (5-
HTT) reuptake 5-HT into presynaptic neuron where the neurotransmitter is redeposited in vesicles or oxidized to the final product of 5-HT metabolism in the brain,
5-hydroxyindoleacetic acid (5-HIAA), by monoamine oxidase A (MAOA).

Presynaptic receptors Postsynaptic receptors

0 -5-HTy,
® -5HT,

00 -5-HTy, /5-HTy
0® -5-HT; / 5-HT,
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Figure 2. The proposed model of the involvement of presynaptic 5-HT,, autoreceptors and the 5-HT,,/5-HT; receptors interaction in the mechanism of the delay of
therapeutic effects of SSRIs. The increase of 5-HT in the synaptic cleft induced by an acute SSRI administration inhibits 5-HT release from the presynaptic endings via
the 5-HT; receptor-dependent feedback mechanism. Chronic SSRI treatment desensitizes 5-HT; 5 autoreceptors. The 5-HT; o/5-HT;, dimerization decreases functional
activity and facilitates the SSRI-induced desensitization of the presynaptic 5-HT,, autoreceptors. The SSRI-induced 5-HT, 5 receptor desensitization restores the 5-HT
release in the synaptic cleft and thereby results in antidepressant therapeutic effect (From Naumenko et al. 2014 [39]).
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of Gi-protein without affecting 5-HT; receptor-mediated activation
of G,-protein.

Different concentration of 5-HT; »/5-HT; heterodimers in 5-HT
presynaptic autoreceptors versus postsynaptic receptors can
potentially explain not only the difference in desensitization of
pre- versus postsynaptic 5-HT, 5 receptors, but also suggests that
the balanced ratio of homo- and heterodimerization in pre- and
postsynaptic neurons may be critically involved in sensitivity to
SSRIs treatment. Moreover, differences in relative concentration
of 5-HT; o/5-HT; heterodimers in the raphe nuclei and hippocam-
pus may explain regional differences in the coupling of 5-HT; 5
receptor to G-proteins and, subsequently, distinct responses to
chronic antidepressants treatment [39] (Figure 2).

In adult brain, the density of 5-HT, receptors in the mid-
brain raphe nuclei area (with prevailed presynaptic 5-HT;4
receptors) is higher than in the hippocampus and other
brain regions with prevailed postsynaptic 5-HT;5 receptors.
Therefore, high 5-HT,4/5-HT; heterodimerization and subse-
quent functional desensitization of 5-HT;, receptors in the
midbrain can decrease the inhibitory effect of presynaptic 5-
HT,5 receptors on the brain 5-HT system functioning. This
possibility [39], based on 5-HT;/5-HT; receptors dimerization,
adds the 5-HT;, receptors to the list of potentially important
players in the mechanism of autoregulation of the brain 5-HT
system and, albeit necessitating additional investigation, may
provide novel explanation for regional difference in 5-HT4
receptors response and delayed clinical effect of SSRIs.

5. Resistance to SSRIs

Several comprehensive recent reviews on possible mechan-
isms of resistance to antidepressant therapy [see 24, 25] may
benefit from more mechanistic, factor-specific molecular ana-
lyses. Here, we discuss selected factors relevant to the known
mechanisms of antidepressant drugs action.

Hereditary resistance to SSRIs treatment has long been linked
to mutations in genes encoding 5-HT; 5 receptor, MAOA, 5-HTT,

and TPH2. However, clinical data linking SSRIs efficacy with
polymorphism in these genes remain conflicting [34-371.

Mice are a valuable tool for reverse genetics and a useful
model for testing antidepressant drugs [80]. In clinical study,
antidepressants efficacy is usually evaluated as an improvement
in depressive score of the patients. What are animal equivalents
of such depressive score? Any animal model for testing antide-
pressants must meet three main criteria of validity [81,82], includ-
ing face, predictive, and construct validity. The predictive validity
remains the main criterion for experimental antidepressant
drugs screening, and several rodent models do possess high
predictive validity. For example, the forced swim and tail suspen-
sion tests are the simplest, commonly used assays with a nearly
95% predictive validity for clinically effective SSRIs [81,83,84].

At present, there are several knockout, knockin, and congenic
mouse lines to study the association the genes encoding 5-HT;5
receptor, MAOA, 5-HTT, TPH2 with SSRiIs efficacy (Table 1).

MAOA is the main enzyme of 5-HT catabolism. MAO inhi-
bitors increase the neurotransmitter concentration in the brain
and produce a therapeutic effect in some depressive patients.
The Maoa gene deficient mice (Tg8) with increased 5-HT levels
and decreased 5-HIAA/5-HT ratio [87,88] is a promising model
to study the association between hereditary MAOA deficiency
and SSRIs efficacy. MAOA deficiency increases the effect of
SSRIs on 5-HT neurotransmission. Indeed, SSRI citalopram pro-
duces more intensive 5-HT release in MAOA deficient Tg8 than
in wild-type C3H mice [89]. Regretfully, the effect of SSRIs on
the depressive-like behavior of Tg8 mice was not studied.

Since presynaptic 5-HT,, autoreceptors attenuate 5-HT
release and their blockade may accelerate SSRIs action [52,124],
their role in genetics of antidepressant response can be reason-
ably expected. The 5-HT,  receptor-deficient mice were gener-
ated on three genetic backgrounds — 129/SvJ [93], Swiss [91], and
C57BL/6J [92]. The 5-HT; 5 receptor knockout does not affect the
levels of 5-HT and 5-HIAA in the brain [93-96], but reduces
immobility time in the tail suspension test [101]. Moreover, the
suppression of 5-HT;, receptor mRNA by the selective siRNA

Table 1. Genetically modified mouse strains used to study the effects of MAOA, 5-HT,, receptor, SERT, and TPH2 deficiency on behavior and antidepressants

efficacy.

Human gene and Control genotype

prototype Mouse model (background) Anxiety and depressive-like behavior, 5-HT system

MAOA knockout [85], Maoa™" mice (Tg8) C3H [87] Increased 5-HT and decreased 5-HIAA levels in the brain in young [87] and adult [88] mice.

1.2 kb upstream VNTR, Increased spontaneous 5-HT release [89] and elevated anxiety in the light/dark test [90].

3-repeats allele [86]
HTR1A Htrla™ mice Swiss [91] No or 50% reduction of 5-HT,, receptors level in Htr1a*” and Htr1a* mice, respectively [91-
C57BL/6J [92] 93]. Unaltered metabolism or release of 5-HT in the brain of Htrla™" mice [93-96].
129/SvJ [93] Increased anxiety in the open field, plus-maze, zero-maze, or novel object tests [91-
93,97-99]. Antidepressant-like effect in the forced swim [101,102] and tail suspension
[92,100,101] tests.
SLC6A4, 5-HTTLPR Slcead™" and C57BL/6J [104] No or 50% reduction of SERT in the brain of Slc6ad™" or Slc6a4*’ mice, respectively
[102,103] Slc6a4™ mice [104,105]. Increased 5-HT level in the synaptic cleft in the brain of Slc6ad™" mice
[106,107]. Increased anxiety in the plus-maze [103] and the open field [108] tests.
Conflicting depressive-like phenotypes in the forced swim and tail suspension tests [109],
unaltered sucrose preference [110].

TPH2 Tph2”’ mice C57BL/6 [47-49]  Reduced 5-HT level in the brain (<8% of the wild-type mice) [47-49]. Decreased anxiety in
the elevated plus- [111,112], novelty-suppressed feeding and dark/light box [112,114]
tests. Decreased [48] or increased [112] depressive-like immobility in the forced swim test.

TPH2, R441H [115] R439H mice C57BL/6 [116] 80% reduction of TPH2 activity and 5-HT level, increased anxiety-related behavior in the

dark/light box, decreased depressive-like immobility in the tail suspension test [116,117].

TPH2, G6493A [118] C1473G, P447R Be-

1473G/B6-1473C

C57BL/6 [119-
121]

50% reduction of TPH2 activity in the brain [120,122,123] but unaltered 5-HT and 5-HIAA
levels [121]. B6-1473G mice show lower immobility in the forced swim test vs. the B6-

1473C mice [120].




administration produces marked antidepressant-like effects in
the forced swim and tail sustention tests [125,126] (Table 1). At
the same time, 5-HT, 5 receptor deficiency in 5-HT; receptor
gene (Htr1a gene) knockout mice [94-96] or induced by siRNA
administration [126] markedly increased the 5-HT extracellular
concentration evoked by SSRIs treatment.

With a minor nonspecific contribution from dopamine and
norepinephrine transporters, 5-HTT selectively reuptakes 5-HT
from the synaptic cleft into the 5-HT neurons, thereby control-
ling extracellular 5-HT level and restoring intraneuronal pool
of this neurotransmitter. SSRIs block 5-HTT and increase 5-HT
concentration in the synaptic cleft. Among numerous muta-
tions in the human 5-HTT gene (S/c6a4), two common muta-
tions in the promoter and the second intron are the most
studied. The STin2 polymorphism in the second intron of 5-
HTT gene includes 10 or 12 repeats of 17 bp sequence [127].
The 5-HTTLPR polymorphism in the promoter region includes
mainly 14 (short) or 16 (long) repeats of 22 bp [102,128]. The
short alleles of these polymorphisms reduce the SLC6A4 gene
expression in vitro compared with the long alleles [102,129].
However, the clinical data on association of these polymorph-
isms with SSRI efficacy are rather conflicting [37].

Since 5-HTT is the primary target for SSRIs, mice with
genetic ablation of 5-HTT gene (Slc6a4™) show blunted
response to these drugs [103,109]. Vital and fertile, these
mice are devoid of functional 5-HTT, and therefore cannot
reuptake the majority of 5-HT [104], except for trace amounts
of 5-HT still nonspecifically uptaken by other monoamine
transporters. 5-HTT expression and 5-HT reuptake in the
brain of heterozygous Slc6a4* mice are about 50% of the
wild type values [104,105], strikingly paralleling human carriers
of the S/S genotype of 5-HTTLPR polymorphism [103]. The
basal concentrations of extracellular 5-HT were markedly
increased in the cortex, striatum [107], and substantia nigra
[106] in the Slc6a4™" mice.

Homozygous 5-HTT-deficient mice show numerous beha-
vior alterations compared with their wild-type and hetero-
zygous counterparts (Table 1). The Slc6a4™ mice of three
genotypes on the C57BL/6J genetic background do not
differ in the depressive-like immobility time in the tail sus-
pension and forced swim tests, but the Slc6a4™" mice with
the 129/S6 genetic background show decreased tail suspen-
sion and increased forced swim immobility [109]. Acute
administration of SSRI, fluoxetine, does not alter the
Slc6a4™" mouse immobility, but produces overt antidepres-
sant effects in both control Sic6a4™* and Slc6a4*" mice
[103,109], collectively negating the clear link between
genetic deficits in 5-HTT function and SSRI efficacy.

TPH2 is the key enzyme of 5-HT synthesis in the brain
and, therefore, its gene may be a likely candidate gene for
SSRIs resistance. There are three currently available mouse
models of genetically defined TPH2 deficiency: (1) several
TPH2 gene knockout strains [47-49,114], (2) the R439H
knockin strain [116], and (3) ‘natural’ C1473G polymorph-
ism [122,123]. The TPH2 knockout markedly reduces 5-HT
level in the mouse brain without altering 5-HT neuron
formation and migration [47-49], but causes delayed
development and early postnatal growth retardation
[49,130]. The R439H knockin is a homologous model of
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human R441H polymorphism, resulting in 80% reduction
of the mouse TPH2 activity as well as 5-HT and 5-HIAA
levels in the brain [116]. C1473G polymorphism in the
TPH2 gene results in about 50% reduction of the enzyme
activity in the brain [119,120,122,123]. Recently, the G
allele has been transferred from the Balb/c [121] or
CC57BR [119,120] to the C57BL/6 genetic background,
and two congenic strains (B6-1473C and B6-1473G mice)
with high and low TPH2 activity have been generated.
While these strains show about 50% difference in the
rate of 5-HT synthesis, they do not differ in 5-HT and 5-
HIAA levels in the brain [121,131,132].

The link between depressive-like behavior and TPH2 defi-
ciency in mice is unclear, as some studies report a mild anti-
depressant effect of TPH2 gene knockout [48] and C1473G
polymorphism [120], while others shows increased depres-
sive-like immobility in the forced swim test, without altering
the tail suspension test behaviors [112]. At the same time, the
R439H knockin mice are more immobile (and, therefore, more
depressive) in the tail suspension test [116,117].

In contrast, experimental data linking TPH2 deficiency and
antidepressant-like response to SSRIs are more consistent.
For example, citalopram [133] and paroxetine [134] decrease
depressive-like immobility in the forced swim test in C57BL/6
and 129/Sv strains homozygous for 1473C allele (high TPH2
activity) but failed to produce antidepressant-like effect in
mice homozygous for 1473G allele (Balb/c and DBA2 strains
with low TPH2 activity). A TPH2 inhibitor, pCPA, reduced
antidepressant-like effect of citalopram in C57BL/6 and 129/
Sv mice, whereas boosting 5-HT synthesis with L-tryptophan
restores lowered antidepressant-like response to citalopram
in Balb/c and DBA2 mice [133]. Both citalopram and parox-
etine reduced immobility in the forced swim test in B6-1473C
mice with high TPH2 activity, but not in B6-1473G mice with
low TPH2 activity [135] (Figure 3), however, showing no
difference between the B6-1473C and B6-1473G congenic
mice in the effect of citalopram in the tail suspension
test [121].

As already mentioned, all clinically effective SSRIs produce
therapeutic (antidepressant) effects only after several weeks
of treatment. Chronic treatment with fluoxetine or paroxe-
tine reduced brain 5-HT level in the R439H knockin mice to
1-3%, while in their wild-type counterparts this reduction
was less pronounced [136] (Figure 4). Figure 5 outlines pos-
sible mechanism of this 5-HT level reduction. 5-HTT returns 5-
HT from the synaptic cleft to the presynaptic serotonergic
neuron for further neurotransmitter reutilization. The 5-HTT
blockade by SSRIs prevents this 5-HT reuptake, thus resulting
in 5-HT loss from the presynaptic pools. High TPH2 activity
can compensate this 5-HT loss, and be sufficient to maintain
normal 5-HT level in the brain, In contrast, low activity of
mutant TPH2 does not minimize the 5-HT loss, causing a
dramatic reduction of 5-HT levels in the brain in R439H
mice [136]. Thus, SSRIs can produce negative effect on ner-
vous system and behavior instead of expected positive ther-
apeutic effects [136].

Finally, the application of MAOA, 5-HT, 5 receptor, 5-HTT, or
TPH2-deficient mice clarified the role of interaction between
the corresponding proteins and efficacy of SSRIs. The MAOA
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Figure 3. Effect of acute. administration of citalopram (2.5 and 5.0 mg/kg) (a) and paroxetine (5.0 and 10.0 mg/kg) (b) on immobility time of the B6-1473C (high
TPH2 activity) and B6-1473G (low TPH2 activity) mice in the forced swim test. Note that both SSRIs significantly reduced immobility in B6-1473C, but not in B6-
1473G mice, * p < 0.05 vs vehicle-treated control group (from Kulikov et al. 2011 [135]).
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Figure 4. Effects of chronic fluoxetine (FLX) and paroxetine (PRX) treatment on 5-HT levels in the Tph2KI mutant (HO) and wild-type mice (WT). Levels of 5-HT in HO
R439H Tph2 mice, which are normally 20% of wild-type baseline levels, are depleted further and to a greater extent than in wild-type mice by chronic fluoxetine
treatment in the drinking water for 6 weeks. 5-HT levels for FLX are shown in the striatum (a) and the frontal cortex (b). Similar to FLX in drinking water, chronic i.p.
PRX treatment depleted the 5-HT levels to a greater extent in HO R439H Tph2 mice in the striatum (c) and the frontal cortex (d). Data are expressed as ng/mg wet
tissue weight and presented as mean + SEM *, **, *** 5 < 0,05, 0.01, 0.001 vs vehicle [from 136].
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Tryptophan

SSRI

Figure 5. A possible mechanism of the interplay between 5-HT transporter (5-HTT) and tryptophan hydroxylase 2 (TPH2) in the mechanism of SSRI resistance. (a) 5-
HTT brings back to the presynaptic neuron a major portion of 5-HT secreted in the synaptic cleft. SSRI inhibits the 5-HTT that result in increased extracellular 5-HT
level but also in decreased intraneuronal stores of 5-HT. High TPH2 activity is sufficient to compensate the inevitable loss of 5-HT in the neuron during SSRI
treatment. (b) Low TPH2 (TPH2*) activity together with normal 5-HTT-mediated reuptake can maintain a steady-state (albeit lower) 5-HT level in the presynaptic
neuron. At the same time, low TPH2* activity itself is insufficient to maintain steady intraneuronal 5-HT level when 5-HTT is inhibited with SSRI. Therefore, a chronic
SSRI treatment results in dramatic loss of 5-HT in the brain of individuals with low TPH2 activity.

deficiency enhanced SSRI effects on extracellular 5-HT,
whereas the Htr1a gene knockout evoked a pronounced anti-
depressant-like action even without any additional SSRIs treat-
ment. Studies using Slc6a4™" mice with 50% Slc6a4 gene
expression show that these heterozygous mice have unim-
paired sensitivity to SSRIs. Taken together, these data suggest
that Maoa, Htrla, Slc6a4 deficient mouse models do not con-
firm essential role of these genes in mechanisms of SSRI
resistance, and may require shifting research focus to the
role of the TPH2 and 5-HTT interaction in antidepressant
responses in both mouse models and human populations.

6. Expert opinion

Overall, novel insights into the role of 5-HT receptors and the
recently identified role of genetically defined activity of TPH2
seems to explain two main challenges related to SSRIs anti-
depressant efficacy - the delay of the onset of their therapeu-
tic effect, and the high percentage of depressive patients that
remain insensitive/resistant to SSRIs.

Progressive desensitization of 5-HT;, autoreceptors and the
time taken by this process may determine the delay of anti-
depressant treatment [52,59-61]. The selectivity of such desen-
sitization only presynaptic 5-HT, 5 receptors can be explained by
recent data on the role of 5-HT; receptor dimerization in the
internalization and functional activity of 5-HT;4 and 5-HT,
receptors. The dimerization of 5-HT; A/5-HT; receptors facilitates
internalization and reduces functional activity of 5-HT; recep-
tors [74,79]. Notably, the density of 5-HT; receptors is higher in

the midbrain raphe nuclei (with prevalent presynaptic 5-HTqa
receptors) than in brain regions with predominantly postsynap-
tic 5-HT, 5 receptor localization. Thus, the 5-HT;/5-HT, dimer-
ization decreases the functional activity of presynaptic 5-HT;
autoreceptors and makes them less effective as 5-HT auto-
inhibitors, thereby promoting antidepressant response [39].

Modulation of receptor signaling by 5-HT;./5-HT, hetero-
dimerization, including enhanced 5-HT,;, receptor internaliza-
tion, is also likely to play a role in CNS pathophysiology, and
may also be of clinical interest, since both receptors are
important targets for depression and anxiety therapy.

In addition to 5-HT;,, compounds acting on other 5-HT
receptors can also lead to new therapies. Notably, agonists
of 5-HT, receptors exert a rapid antidepressant effect in
rodents after a 3 days treatment [137]. These effects in rats
were accompanied by a desensitization of 5-HT;, presynaptic
and sensitization of postsynaptic 5-HT;, receptors in hippo-
campus, thus suggesting the interplay between 5-HT, and 5-
HT, A receptors in the effect of antidepressants.

Numerous clinical observations of the association between
the SSRIs efficacy and the genetically defined characteristics of
key proteins in 5-HT signaling (TPH2, MAOA, 5-HT, 5 receptor, and
5-HTT) remain contradictory and complicate our understanding
of the SSRIs resistance. During the last decades, multiple trans-
genic, knockout and mutant mouse strains have been generated,
offering another opportunity to test the effect of individual genes
and proteins on antidepressant drug efficacy [80].

Preclinical studies using the ‘reverse genetics’ (from gene
to traits) approach and mutant mouse strains also failed to
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confirm the association between MAOA, 5-HTT, and 5-HTqa
receptor deficiency and resistance to SSRIs treatment, since
their ablation produced antidepressant-like or no effects on
SSRIs action. In contrast, 5-HT; receptor deficiency may attenu-
ate the 5-HT downregulation induced by presynaptic 5-HT
receptors and, therefore, increase the therapeutic delay or
produce the antidepressant resistance.

At the same time, experimental data consistently show
essential role of TPH2 deficiency in the efficacy of SSRIs treat-
ment. The observation that chronic SSRI treatment further
reduces 5-HT levels in mice with decreased TPH2 activity may
indicate a probable TPH2-mediated mechanism of antidepres-
sant resistance [136]. The effect of interplay between 5-HTT and
TPH2 on SSRIs resistance is also in line with proposed drug
target x drug sensitivity predictor interplay [27], as 5-HTT is the
target for SSRIs while TPH2 acts as a predictor for their clinical
effects. Finally, this interplay may also be clinically relevant for
‘personalizing’ pharmacotherapy, since SSRI therapy could not
be recommended for depressive patients with reduced TPH2
activity (where other treatments, such as MAOA inhibitors or
5-HT precursor 5-hydroxytryptophan, may be more effective).

These considerations also highlight the need to explore muta-
tions reducing TPH2 activity. Such functional mutations are rare,
and alone cannot explain the high (20-40%) percent of SSRI-
resistant patients. To address this question, one may consider a
target sequencing of the TPH2 gene in patients with SSRI-resistant
depression in order to find new rare mutation(s) that decrease
TPH2 activity. Other approaches may focus on common mutations
with moderate negative effects on TPH2 activity. One of such
mutations is the G6493A polymorphism (SNP rs1389493) with
6493A allele found in about 18% of Caucasian populations [118].

In summary, this review proposes shifting the research
focus from individual genes and proteins to their interactions
in explaining the mechanism of action of SSRIs antidepres-
sants. These interactions should be considered when develop-
ing antidepressant drugs as well as for predicting and
improving of the efficacy of existing antidepressant therapies.
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