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A B S T R A C T   

Autism spectrum disorders (ASDs) are some of the most common neurodevelopmental disorders; however, the 
mechanisms underlying ASDs are still poorly understood. Serotonin (5-HT) and brain-derived neurotrophic 
factor (BDNF) are known as key players in brain and behavioral plasticity and interact with each other. 5-HT1A 
receptor is a principal regulator of the brain 5-HT system, which modulates normal and pathological behavior. 
Here we investigated effects of adeno-associated-virus–based 5-HT1A receptor overexpression in the hippocam-
pus of BTBR mice (which are a model of autism) on various types of behavior and on the expression of 5-HT7 
receptor, proBDNF, mature BDNF, and BDNF receptors (TrkB and p75NTR). The 5-HT1A receptor overexpression 
in BTBR mice reduced stereotyped behavior in the marble-burying test and extended the time spent in the center 
in the open field test. Meanwhile, this overexpression failed to affect social behavior in the three-chambered test, 
immobility time in the tail suspension test, locomotor activity in the open field test, and associative learning 
within the “operant wall” paradigm. The 5-HT1A receptor overexpression in the hippocampus raised hippo-
campal 5-HT7 receptor mRNA and protein levels. Additionally, the 5-HT1A receptor overexpression lowered both 
mRNA and protein levels of TrkB receptor but failed to affect proBDNF, mature BDNF, and p75NTR receptor 
expression in the hippocampus of BTBR mice. Thus, obtained results suggest the involvement of the 5-HT and 
BDNF systems’ interaction mediated by 5-HT1A and TrkB receptors in the mechanisms underlying autistic-like 
behavior in BTBR mice.   

1. Introduction 

An autism spectrum disorder (ASD) is a broad term referring to a 
condition characterized by a lack of social interaction, repetitive 
behavior of varying severity, and often learning disabilities. ASD diag-
nosis is still based on observation of atypical behaviors, with such 
criteria as persistent deficits in social communication and restricted and 
repetitive patterns of behavior [1]. Autism is one of the most common 
diseases among children and the most prevalent neurodevelopmental 
disorder [2]. Current estimates from the Centers for Disease Control and 
Prevention (CDC) indicate that one in 59 eight-year-olds has autism [3]. 
Despite intensive studies by numerous research groups, the mechanisms 
underlying ASDs remain unknown [4,5]. 

It is well known that brain serotonin (5-HT) plays an important role 
in the control of normal and pathological behavior [6–9]. Among many 
5-HT receptors mediating 5-HT action on neurons, 5-HT1A receptor is 

one of the most extensively investigated. This receptor is involved in the 
regulation of the brain 5-HT system’s functional activity [10,11] and 
various physiological functions [9] as well as in mechanisms of different 
psychopathologies including depression, anxiety, suicide, and schizo-
phrenia [11–18]. 

It is known that 5-HT1A receptor participates in the mechanisms 
underlying social and repetitive behaviors [19,20] as well as learning 
and memory [21], which are known to be impaired in ASDs. Nonethe-
less, data on 5-HT1A receptor’s role in the pathogenesis of autism are 
scarce and contradictory. One of the few postmortem studies indicates 
significant reductions in 5-HT1A receptor-binding density in superficial 
and deep layers of the cingulate cortex and fusiform gyrus: two regions 
within an extensive limbic-cortical network that contribute to 
social-emotional behaviors [22]. In a subsequent study, no difference in 
5-HT1A receptor concentration and distribution was found between ASD 
patients and controls subjects [23]. Later, however, deregulation of 
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5-HT1A receptor density in the striatum of men with an ASD was 
revealed [24]. Anti–human 5-HT1A antibodies were discovered in the 
blood of an autistic child, and it was suggested that this finding may 
have clinical or etiologic significance for this disorder [25]. Other evi-
dence of 5-HT1A receptor’s role in the pathogenesis of ASDs comes from 
pharmacological studies. It has been shown that a 5-HT1A receptor’s 
agonist, 8-OH-DPAT, increases social interaction and improves fear 
memory extinction in the offspring of a rat model of a valproate-induced 
ASD; 8-OH-DPAT treatment also reversed the characteristics of minia-
ture excitatory post-synaptic currents as well as paired pulse facilitation 
observed in lateral amygdala slices [26]. 

On the other hand, brain-derived neurotrophic factor (BDNF) is now 
known to take part in the pathogenesis of many disorders of the nervous 
system [27–33]. Nowadays, this neurotrophic factor is a promising drug 
target [34–36]. There is some evidence of the involvement of BDNF in 
the pathogenesis of autism. Several papers indicate high levels of BDNF 

in the blood and brain in patients with ASDs [37,38]. Genetic research 
has also linked certain single-nucleotide polymorphism haplotypes of 
the BDNF gene to autism [39]. The interaction between BDNF and the 
brain 5-HT system as well as the role of this cross talk in different pa-
thologies are well described [40]; however, the interrelations between 
5-HT and BDNF systems in autism have not been investigated yet. 

The BTBR T+ Itpr3tf/J (BTBR) mouse strain is one of the most widely 
used animal models of autism. These mice have the main behavioral 
characteristics defining ASDs, including repetitive stereotyped behav-
iors and impairment of social interactions [41]. The density of 5-HT 
neurons is reported to be elevated in the midbrain and lowered in the 
hippocampus of BTBR mice [42]. A year ago, we revealed that a 5-HT1A 
receptor functional response is significantly reduced in BTBR mice 
compared to C57BL/6J mice without significant differences in 5-HT1A 
receptor mRNA and protein levels [43]. It was demonstrated recently 
that 5-HT1A receptor can form heterodimers with 5-HT7 receptor that 

Fig. 1. (a) Maps of plasmids AAV-Syn-HTR1A-eGFP and AAV-Syn-eGFP. (b) Micrographs of brain slices after AAV-Syn-HTR1A-eGFP injection (scale bar = 100 µm). 
Cell nuclei were stained with a bis-benzimide solution (Hoechst 33258 dye, 5 µg/ml in PBS, Sigma-Aldrich, Burlington, MA, USA). 

E.M. Kondaurova et al.                                                                                                                                                                                                                        



Behavioural Brain Research 438 (2023) 114168

3

significantly affect 5-HT1A receptor functioning [44] and play an 
important part in behavioral plasticity [17,45,46]. Consequently, such 
cross talk of 5-HT1A and 5-HT7 receptors could also be important for the 
mechanisms of ASDs, although this notion has not been investigated yet. 

According to the above-mentioned data taken together with the 
crucial function of 5-HT1A receptor in the control of learning and social 
behavior disrupted in BTBR mice and their stereotyped behavior as well 
as in the regulation of the brain BDNF system, we decided to investigate 
the effect of 5-HT1A receptor overexpression in the hippocampus of 
BTBR mice on their autistic-like behavior and on the expression of 5-HT7 
receptor, proBDNF, mature BDNF, and BDNF receptors (TrkB and 
p75NTR). 

2. Materials and methods 

2.1. Animals 

Experiments were carried out on specific-pathogen-free adult (P60) 
male mice of the BTBR inbred strain. The mice were housed at the Center 
for Genetic Resources of Laboratory Animals (unique identifier RFME-
FI62119X0023) at the Institute of Cytology and Genetics, the Siberian 
Branch of the Russian Academy of Sciences (ICG SB RAS), under stan-
dard laboratory conditions on a 14/10 h light/dark cycle with water and 
feed available ad libitum. The primary source of mice was Charles River 
Laboratories (Wilmington, NC, USA). Two days before a behavioral 
experiment, the mice weighed 25 ± 1 g and were isolated into individual 
cages to prevent the group effect. The number of animals per group was 
7–10. All experimental procedures were in compliance with the Guide 
for the Care and Use of Laboratory Animals, Eighth Edition, Committee 
for the Update of the Guide for the Care and Use of Laboratory Animals; 
National Research Council (© 2011 National Academy of Sciences; 

Fig. 2. The experimental design. pAAV-Syn-HTR1A-eGFP (expressing 5-HT1A receptor) was stereotactically administered into the hippocampus of mice of the 
experimental group. pAAV-Syn-eGFP (expressing only eGFP) was administered into the hippocampus of mice of the control group. Five weeks after recovery (2 days 
before the behavioral tests), mice were isolated into individual cages. Two days after behavioral testing, the animals were decapitated for subsequent analysis of 
brain samples. 

Table 1 
The list of antibodies used and immunodetection conditions.  

Antibodies, manufacturer Dilution Incubation time, 
conditions 

primary antibodies   
Rabbit polyclonal antibody to 5-HT1A 

protein, Abcam, Cambridge, United 
Kingdom, cat. # ab85615 

1:1000 in 5% milk 
powder with TBST 

Overnight at 
4 ◦C 

Rabbit monoclonal antibody to 5-HT7 

protein, Abcam, Cambridge, United 
Kingdom, ab128892 

1:500 in 5% milk 
powder with TBST 

Overnight at 
4 ◦C 

Rabbit antibody to BDNF protein, Abcam, 
Cambridge, United Kingdom, ab46176 

1:1000 in 5% BSA 
with TBST 

Overnight at 
4 ◦C 

Mouse antibody to proBDNF protein, 
Santa-Cruz, Dallas, TX, USA, G-5514 

1:250 in 5% milk 
powder with TBST 

Overnight at 
4 ◦C 

Rabbit antibody to p75NTR Abcam, 
Cambridge, United Kingdom, ab38335 

1:500 in 5% milk 
powder with TBST 

2 h at room 
temp. 

Rabbit antibody to TrkB Abcam, 
Cambridge, United Kingdom, ab18987 

1:500 in 3% BSA Overnight at 
4 ◦C 

Mouse monoclonal antibody to GAPDH 
protein, Abcam, Cambridge, United 
Kingdom, ab8245 

1:10000 in 5% 
BSA with TBST 

Overnight at 
4 ◦C 

secondary antibodies   
Goat antibody (against rabbit 

immunoglobulins) conjugated to 
horseradish peroxidase, Invitrogen, 
Waltham, MA, USA, G-21234 

1:10000 in 5% 
milk powder in 
TBST 

1 h at room 
temp. 

Goat antibody (against mouse 
immunoglobulins) conjugated to 
horseradish peroxidase, Abcam, 
Cambridge, United Kingdom, ab6728 

1:30000 in 5% 
BSA in TBST 

1 h at room 
temp.  
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Washington, DC, USA) and were approved by the ethical committee of 
the ICG SB RAS (Protocol No. 106 of 23 November 2021). All surgical 
procedures were performed under anesthesia, and every effort was made 
to minimize the suffering of the animals. 

2.2. The cell line 

HEK 293FT cells (ATCC cat. # PTA-5077, Manassas, VA, USA) were 
used to produce recombinant adeno-associated virus (rAAV) vectors. 
The cell line was maintained in DMEM containing 10% (v/v) of FBS 
(F2442, Sigma-Aldrich, Burlington, MA, USA) and 100 U/ml penicillin/ 
streptomycin (P4333, Sigma-Aldrich, Burlington, MA, USA) at 37 ◦C in a 
humidified atmosphere of 95% air and 5% CO2. The cells were split at 
70% confluence, and the culture medium was refreshed every 2 or 3 
days. 

2.3. Production of rAAV vectors 

To estimate the influence of 5-HT1A receptor overexpression on the 
autistic-like behavior and brain 5-HT and BDNF systems, we employed 
two types of genetic constructs: pAAV-Syn-HTR1A-eGFP expressing 5- 
HT1A receptor (for the experimental group) and pAAV-Syn-eGFP 
expressing only eGFP (for the control group). pAAV-Syn-HTR1A-eGFP 
was obtained by cloning of the cDNA encoding mouse Htr1a into the 
pAAV-Syn-eGFP vector. Maps of the plasmids AAV-Syn-HTR1A-eGFP 
and AAV-Syn-eGFP utilized in the current study are displayed in 
Fig. 1a. The packaging of pAAV-Syn-HTR1A-eGFP or control pAAV-Syn- 
eGFP plasmids DNA into AAV capsids was performed by cotransfection 
with plasmids AAV-DJ and pHelper (Cell Biolabs, Inc., San Diego, CA, 
USA). Viral particles were harvested after 48 h, according to the protocol 
described by Grimm and coauthors [47]. The number of the obtained 
viral particles was determined by real-time PCR with the following 
primer pair: F 5′-CCTGGTTGCTGTCTCTTTATGAGG-3′; R 
5′-TGACAGGTGGTGGCAATGC-3′. Serial dilutions of an original 
plasmid of known concentration served as standards for quantifying the 
viral particles. The AAV vectors used in this study had similar genomic 
titers (109 viral genomes per microliter). 

Fig. 3. The influence of AAV-Syn-HTR1A-eGFP administration into the hippocampus on 5-HT1A receptor mRNA (a) and protein (b) levels in the hippocampus of 
BTBR mice. Gene expression is presented as the number of the gene’s cDNA copies per 100 cDNA copies of rPol2. The protein was quantitated in chemiluminescence 
relative units and normalized to GAPDH chemiluminescence relative units. All the values are means ± SEM (n ≥ 7). 

Fig. 4. The impact of the 5-HT1A receptor overexpression in the hippocampus 
of BTBR mice on behavior in the marble-burying test. All the values are pre-
sented as mean ± SEM (n = 7). 
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2.4. Stereotaxic microinjections 

Mice were anesthetized by an intraperitoneally (i.p.) administered 
solution (1 ml/kg) of 2,2,2-tribromoethanol (T48402–25 G, Sigma- 
Aldrich, Burlington, MA, USA) in 2-methyl-2-butanol (240486, Sigma- 
Aldrich, Burlington, MA, USA). The AAV vectors (carrying plasmid 
pAAV-Syn-HTR1A-eGFP or pAAV-Syn-eGFP) were bilaterally injected 
into the hippocampus at the following coordinates: AP-1, L± 1, DV 2.5 
and AP-2, L± 2, DV 1.5 (according to preliminary experiments and the 
mouse brain atlas) [48]. A viral vector (0.5 μl, 109 ng/μl) was micro-
injected into the site at the rate of 0.2 μl/min via a Hamilton syringe. 
The syringe was left in place for 3 min and then removed slowly. 

2.5. Behavioral tests 

After 5 weeks of postoperative recovery, the mice underwent a 
behavioral test battery according the experimental design showed in 
Fig. 2. Daily dynamics of locomotor activity, sleep, and water and feed 
consumption were investigated in the PhenoMaster system (TSE, Bad 
Homburg, Hessen, Germany) according to the manufacturer’s in-
structions. The device consists of seven individual cages equipped with 
infrared sensors that trace an animal’s movements. Drinking bowls and 
feeders were also equipped with sensors, allowing for accurate mea-
surement of water and feed consumption. The data from the sensors 
were recorded each minute and processed by the software from the 

manufacturer. The animals learned to use the drinking bowls and 
feeders for 2 successive days, and then they were isolated in Pheno-
Master cages, and their locomotion, sleep duration, water and feed 
consumption were registered for 48 h. The first 24 h (1–24 h) were 
considered an adaptive period and were disregarded. The dynamics of 
locomotor (m) and exploratory activities (counts) as well as water (ml) 
and feed (g) consumption were assessed as described elsewhere [49]. 

The “operant wall” was used to estimate the impact of 5-HT1A re-
ceptor overexpression on associative learning in BTBR mice. The “op-
erant wall” unit is a metal wall mounted in each home cage of the 
PhenoMaster system. There are three recesses and eight light indicators 
on the wall. One of them lit up when the device was turned on and went 
out when the animal obtained the maximum number of pellets, thereby 
signaling the beginning and end of a trial. Other light indicators served 
as markers that prompted the animal the correct the order of in-
teractions with the “operant wall.” Every recess contains a laser sensor 
that detects the immersion of a mouse nose into it (“nose poke”). To 
receive the “reward,” the animal must perform nose pokes in the correct 
order, after which the “reward” indicator in the middle recess lights up, 
and a sweet pellet is dispensed. The number of available rewards varied 
from five on the training day to 10 on each experimental day. 

After a mouse habituated to the home cage (a day after being placed 
in the device), at the beginning of the dark phase of the day, the “operant 
wall” was turned on, and the animal was given 2 h to get acquainted 
with the device and the learning task. Because mice were not subjected 

Fig. 5. Effects of the 5-HT1A receptor overexpression in the hippocampus of BTBR mice on behavior in (a) the three-chambered social test, (b) the tail suspension test, 
on the distance traveled (c) and time spent in the center of the arena (d) in the open field test. All the data are presented as mean ± SEM (n = 8). 
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to food deprivation, on the "training" day, one pellet was placed in the 
central recess for familiarization with the food reward and to arouse the 
animal’s interest. On the first, “training” day, the task was simple: to get 
a reward, it was enough to stick one’s nose into the hole marked with a 
lit up light bulb, but the task became more difficult with each subse-
quent day, reaching a maximum of complexity by the third day. On the 
second day, to get the reward, it was necessary to perform two nose 
pokes in the two marked holes. On the third day, the task did not differ 
from the previous day, but there was no light indication: the animal had 
to recall the necessary sequence of actions on its own. Cumulative 
numbers of pellets and nose pokes on the third day were recorded. 

For assessment of locomotor activity, the open field test was carried 
out. A circular arena (40 cm in diameter) bordered by a white plastic 
wall and illuminated through a mat and semitransparent floor was used. 
A mouse was placed near the wall and tested for 5 min. The total dis-
tance traveled was measured in meters automatically by means of the 
EthoStudio software [50]. 

The tail suspension test was performed to assess depressive-like 
behavior. Briefly, mice were suspended by the tail using adhesive tape 
on a horizontal bar positioned at 50 cm height. The behavior of mice 
was registered for 6 min by the EthoStudio software. Total time of 
immobility was determined by an experienced rater blinded to group 
assignment of the mice. 

Assessment of stereotyped behavior was performed by the marble- 

burying test [51,52]. Marble burying is considered a test for repetitive 
and anxiety-related behavior in rodents [52]. Mice were taken from 
their home cages and placed individually in polypropylene cages (42 ×

24 × 12 cm), containing 20 clean glass marbles 1.5 cm in diameter, 
evenly spaced on 5-cm-deep sawdust without feed or water. The ceiling 
was composed of a metal grid. The marbles buried at least two-thirds 
deep were counted 30 min later. 

The three-chambered social approach test was performed to investigate 
mice’s sociability, as described previously [53]. Each mouse was placed 
separately in a rectangular socialization device (60 × 40 × 22 cm) made 
of clear polycarbonate. The test consisted of two stages: the habituation 
phase and socialization phase. Tested mice were placed in the central 
chamber during the habituation phase to freely explore the three 
chambers for 10 min. In the socialization phase, a new mouse (S) and a 
new object (O) were placed on each side of the chamber, and each 
experimental mouse was allowed to explore all three chambers for 
10 min. The time spent in each chamber and the sniffing time (nose 
toward the cage at a distance of less than 2 cm) for each mouse during 
each 10-min phase were detected and recorded using the EthoStudio 
software [50]. The preference index was calculated as the difference in 
time between the new mouse and the new object divided by the total 
time spent in the two side chambers or sniffing targets (S-O/total time). 
The equipment was cleaned after each test with 70% alcohol and water. 

Fig. 6. Effects of the 5-HT1A receptor overexpression in the hippocampus of BTBR mice on behavior in a home cage: (a) water consumption, (b) feed intake, (c) 
activity, and (d) distance traveled. All the values are presented as mean ± SEM (n ≥ 7). 
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2.6. Isolation of brain structures 

Two days after behavioral testing, the animals were decapitated, and 
the hippocampus was excised on ice, frozen in liquid nitrogen, and 
stored at − 80 ◦C until subsequent procedures. 

2.6.1. RT-PCR 
Total RNA was isolated with the TRIzol reagent (15596026, Invi-

trogen, Waltham, MA, USA) and then treated with RNA-free DNase 
(Promega, Madison, WI, USA); 1 µg of the mRNA was used for cDNA 
synthesis with a random hexanucleotide primer. PCR was conducted as 
in our previous works [54–56]. Quantitative real-time PCR was carried 
out on a LightCycler 480 (Roche Applied Science, Switzerland) using the 
following primers: Htr1a F 5′-GACTGCCACCCTCTGCCCTATATC-3′ and 

R 5′-TCAGCAAGGCAAACAATTCCAG-3′; Htr7 F 5′-GGCTACACGATCT-
ACTCCACCG-3′ and R 5′-CGCACACTCTTCCACCTCCTTC-3′; Bdnf F 5′- 
TAGCAAAAAGAGAATTGGCTG-3′ and R 5′-TTTCAGGTCATGGATATG-
TCC-3′; Ntrk2 F 5′-CATTCACTGTGAGAGGCAACC-3′ and F 5′-ATCAG-
GGTGTAGTCTCCGTTATT-3′; Ngfr F and R 5′-CACAACCACAGCAGCC 
AAGA-3′; rPol2 F 5′-GTTGTCGGGCAGCAGAATGTAG-3′ and R 5′-TCAA 
TGAGACCTTCTCGTCCCC-3′. A calibration curve in a plot of Ct 
(threshold cycle) versus minus lg P (decimal logarithm of the amount of 
a DNA standard) was constructed automatically by the LightCycler 480 
System software. Gene expression is presented as the number of cDNA 
copies per 100 copies of rPol2 cDNA [57–59]. A melting-curve analysis 
was performed at the end of each run for each primer pair, allowing us to 
control amplification specificity. 

Fig. 7. The influence of the 5-HT1A receptor overexpression in the hippocampus of BTBR mice on (a) the number of obtained pellets and (b) the number of nose pokes 
within the “operant wall” paradigm. All the values are means ± SEM (n = 8). 

Fig. 8. Effects of the 5-HT1A receptor overexpression in the hippocampus on 5-HT7 receptor mRNA (a) and protein (b) levels in the hippocampus of BTBR mice. Gene 
expression is presented as the number of the gene’s cDNA copies per 100 cDNA copies of rPol2. All the data are indicated as mean ± SEM (n ≥ 7). 
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Fig. 9. Effects of the 5-HT1A receptor overexpression in the hippocampus on (a) BDNF mRNA and (c) protein levels, (b) on the proBDNF protein level, (d) on TrkB 
mRNA and (e) protein levels, and (f) on p75NTR mRNA and (g) protein levels in the hippocampus of BTBR mice. Gene expression is presented as the number of a 
gene’s cDNA copies per 100 cDNA copies of rPol2. Protein levels were determined in chemiluminescence relative units and normalized to GAPDH chemiluminescence 
relative units. All the values are means ± SEM (n ≥ 7). 
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2.7. Western blotting 

For assessment of total protein levels, a tissue sample was homoge-
nized in LB buffer (300 mM NaCl, 100 mM Tris-HCl pH 8, 4 mM EDTA, 
0.2% Triton X-100, 1 mM NaVO4, 2 mM PMSF, and a protease inhibitor 
cocktail), incubated 60 min on ice, and centrifuged (12,000 × g, 
15 min). Supernatant protein was transferred to a clean tube and kept at 
− 80 ◦C. Protein concentration was estimated spectrophotometrically 
with the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific Inc., 
Waltham, MA, USA) on a NanoDrop 2000 C spectrophotometer (Thermo 
Fisher Scientific Inc., Waltham, MA, USA), followed by adjustment of 
the samples to the same concentration with 2 × Laemmli sample buffer. 
Proteins in the samples were denatured by boiling for 10 min at 95 ◦C. 
Proteins in the resultant extracts (30 μg of total protein per lane for 
BDNF and pro-BDNF, and 15 μg of total protein per lane for other pro-
teins: 5-HT1A, 5-HT7, p75NTR, and TrkB) were resolved by SDS-PAGE and 
blotted onto a nitrocellulose membrane (Bio-Rad Laboratories, Inc., 
Hercules, CA, USA) using a Trans-Blot Turbo Transfer System (Bio-Rad 
Laboratories, Inc., Hercules, CA, USA). The membranes were blocked in 
TBS-T containing 5% of nonfat dry milk (NFDM-TBST) for 1 h, rinsed, 
and next incubated with primary antibodies (Table 1). After protein 
detection (as described below), all blots were stripped and then repro-
bed with anti-GAPDH as a loading control. For protein detection, the 
membranes were washed in TBST (5 × 5 min), followed by incubation 
with a secondary antibody conjugated with horseradish peroxidase. 
After washing, the blots were incubated with the Clarity Western ECL 
Substrate (Bio-Rad Laboratories, Inc., Hercules, CA, USA) according to 
the manufacturer’s instructions. Protein bands were detected using a C- 
DiGit Blot Scanner (LI-COR, Lincoln, NE, USA). Quantification of protein 
bands was performed in the ImageStudio software (LI-COR Image Studio 
Software, Lincoln, NE, USA). Target protein levels were normalized to 
GAPDH levels. 

2.8. Fluorescent microscopy of mouse brain sections 

Mice were transcardially perfused with phosphate-buffered saline 
(PBS) and a 4% paraformaldehyde solution under anesthesia at 5 weeks 
after the AAV injection. The brain was removed and postfixed with 4% 
paraformaldehyde for 6 h and immersed in 30% sucrose in PBS for 2-day 
incubation. Sequential 14-µm slices were prepared on a cryostat 
(Thermo Scientific, Inc., Waltham, MA, USA). Cell nuclei were stained 
with a bis-benzimide solution (Hoechst 33258 dye, 5 µg/ml in PBS, 
Sigma-Aldrich, Burlington, MA, USA). Finally, the sections were 
mounted in an antiquenching medium (Fluoromount G; Southern 
Biotechnology Associates) followed by examination under a Zeiss Axi-
oImager2 microscope with 10 × and 40 × air-immersion objectives. 
Cryosections from three animals were analyzed to obtain representative 
images. These analyzed mice received an injection of AAV-5-HT1A- 
eGFP but were not subjected to the behavioral testing. 

2.9. Statistics 

Statistical analysis was performed in the STATISTICA software, 
version 8.0. Data distribution was evaluated for normality by the Sha-
piro–Wilk test. The Dixon test was used to find and exclude outliers from 
the analysis. For nonparametrically distributed data, the Mann–Whitney 
U test was carried out. For parametric data, two-tailed Student’s t test 
was applied to determine statistical significance of a difference between 
two experimental groups. Feed and water consumption as well as lo-
comotor and exploratory activities in a home cage were assessed by 
repeated-measures two-way ANOVA. The statistical significance was set 
to p < 0.05. The results are presented as mean ± SEM. 

3. Results 

The site of the in vivo injection of the viral construct was confirmed 

by fluorescent microscopy (Fig. 1b). In micrographs of brain slices, the 
fluorescence of the 5-HT1A receptor fused with eGFP could be observed 
in the hippocampus region of mice injected with AAV-Syn-HTR1A-eGFP. 

Administration of the AAVs caused an expected increase in 5-HT1A 
receptor mRNA (t = 2.2, df = 13, p < 0.05) and protein levels (t = 3.99, 
df = 14, p < 0.01) in the hippocampus of BTBR mice from the experi-
mental group (Fig. 3). 

The upregulation of the hippocampal 5-HT1A receptor in BTBR mice 
led to a significant reduction of stereotyped behavior as evidenced by a 
lower number (U = 6.5, p < 0.05) of buried marbles in the marble- 
burying test (Fig. 4). Overexpression of the 5-HT1A receptor in the hip-
pocampus failed to affect social behavior in the three-chambered test 
(t = 0.8, df = 14, p > 0.05), immobility time in the tail suspension test 
(t = 0.6, df = 14, p > 0.05), and locomotor activity in the open field test 
(t = 0.4, df = 14, p > 0.05) (Fig. 5a, b, c). At the same time, 5-HT1A 
receptor overexpression in the hippocampus of BTBR mice extended the 
time spent in the center in the open field test (t = 4.2, df = 14, 
p < 0.001) (Fig. 5d). A slight decline of mouse activity on the fourth day 
in the home cage was noted for mice from the experimental group 
(p < 0.01), whereas in control mice, this difference was only marginally 
significant (p = 0.07). Feed (F3,39 = 1.2, p > 0.05) and water (F3,39 =

0.2, p > 0.05) consumption as well as distance traveled (F3,42 = 1.0, 
p > 0.05) did not change in BTBR mice of the experimental group 
(Fig. 6). Within the “operant wall” paradigm, the upregulation of the 
hippocampal 5-HT1A receptor in BTBR mice failed to improve associa-
tive learning (Fig. 7). No effect was detectable for both the number of 
obtained pellets (U = 30, p > 0.05) and the number of nose pokes 
(t = 1.9, df = 14, p > 0.05). 

Of note, the 5-HT1A receptor overexpression in the hippocampus was 
accompanied by a significant increase in hippocampal 5-HT7 receptor 
mRNA (t = 6.1, df = 13, p < 0.001) and protein levels (t = 2.9, df = 14, 
p < 0.05) (Fig. 8). 

The 5-HT1A receptor overexpression resulted in significant changes 
in the BDNF system functioning. A considerable decline of mRNA 
(t = 4.5, df = 13, p < 0.001) and protein levels (t = 3.3, df = 14, 
p < 0.01) of TrkB receptor (which mediates the action of mature BDNF) 
was demonstrated in the hippocampus of the experimental group of 
BTBR mice (Fig. 9d, e). Meanwhile, the upregulation of the 5-HT1A re-
ceptor in the hippocampus was not accompanied by significant expres-
sion changes for BDNF (p > 0.05 for mRNA and protein level), its 
precursor proBDNF (p > 0.05), and p75NTR receptor (p > 0.05) 
(Fig. 9a–c, f, g). 

4. Discussion 

5-HT1A receptor is implicated in an amazingly wide range of be-
haviors. There is evidence of involvement of 5-HT1A receptors in loco-
motor activity and a novelty response [60], in alcohol consumption [61, 
62], feeding behavior [63], water intake [64], drug addiction [65], and 
mechanisms of cocaine [66–68] and opioid action [69]. There are data 
indicating a role of 5-HT1A receptor in the mechanisms of social 
behavior [24,70,71], stereotyped behavior [72], learning and memory 
[73,74], and active stress avoidance [75,76], which are known to be 
disrupted in ASDs [77–79]. Nevertheless, the data on 5-HT1A receptor in 
ASDs in humans and on its relevance to the regulation of autistic-like 
behavior in animal models of autism are extremely limited. 

In the present paper, we demonstrated that administration of AAV- 
Syn-HTR1A-eGFP into the hippocampus of BTBR mice leads to an ex-
pected increase of 5-HT1A receptor mRNA and protein levels in the 
hippocampus. 

Mice of the BTBR strain, a widely used model of autism, manifest the 
main behavioral characteristics defining ASD, including impairment of 
social interactions and repetitive stereotyped behaviors [41]. Here we 
showed that AAV-based 5-HT1A receptor overexpression in the hippo-
campus of BTBR mice significantly alleviates stereotyped behavior. 
Overall, our results on the suppressive effect of the hippocampal 5-HT1A 
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receptor overexpression on stereotyped behavior are in agreement with 
other reports, which indicate that 5-HT1A receptor overexpression re-
duces repetitive and restricted behaviors [19,20]. At the same time, our 
data are suggestive of the importance of hippocampal 5-HT1A receptor 
for the regulation of this type of autistic-like behavior in BTBR mice. 

The overexpression of 5-HT1A receptor in the hippocampus of BTBR 
mice failed to significantly influence mouse behavior in a home cage. 
Feed and water consumption as well as distance traveled did not change 
in mice of the experimental group. Nonetheless, we noticed a slight 
decline of murine activity on the fourth day in the home cage for mice 
from the experimental group, whereas in control mice, this difference 
was only marginally significant. Such a decrease could be considered a 
normal reaction to a familiar environment, and the same direction of 
behavioral alterations in the comparison of the experimental and control 
groups does not allow to make any firm conclusions about 5-HT1A re-
ceptor’s function in the regulation of this behavioral parameter in BTBR 
mice. 

In line with this notion, the 5-HT1A overexpression in the hippo-
campus of BTBR mice failed to produce any changes in locomotor ac-
tivity of the experimental animals on the novel territory in the open field 
test. Nevertheless, this overexpression significantly extended the time 
spent in the center of the arena. This finding is suggestive of enhance-
ment of exploratory behavior. On the other hand, we should take into 
account the exaggerated stress avoidance of BTBR mice [80] together 
with the fact that the center of the arena is open and illuminated space 
that should provoke physiological anxiety-related fear in mice. There-
fore, our results may also indicate some anxiolytic-like response to the 
5-HT1A receptor overexpression in the hippocampus. This idea is actu-
ally in good agreement with ample data on the anxiolytic effect of 
5-HT1A receptor agonists [81,82] and with reports that clinically used 
anxiolytic drugs mostly possess 5-HT1A agonistic activity [83]. 

Unfortunately, the 5-HT1A receptor overexpression in the hippo-
campus failed to restore another kind of autistic-like behavioral trait of 
BTBR mice: the social behavior deficit. It has been demonstrated earlier 
that stimulation of 5-HT1A receptor with its agonist 8-OH-DPAT en-
hances social interaction in a rat model of a valproate-induced ASD [26, 
84]. Nevertheless, taking into account low specificity of systemic 
administration of a 5-HT1A receptor agonist to brain structures, our data 
suggest that at least hippocampal 5-HT1A receptors are not significantly 
involved in the social behavior deficit in an ASD. At the same time, 
differences in the pathogenesis of autistic-like behavior between genetic 
(BTBR mice) and pharmacological (valproate-induced) models must be 
considered as well. 

A positive influence of 5-HT1A receptor stimulation on fear memory 
extinction has been demonstrated in the same pharmacological model 
(rat model of a valproate-induced ASD) [26]. In our study, we did not 
reveal an effect of the hippocampal 5-HT1A receptor overexpression on 
associative learning within the “operant wall” paradigm. On the other 
hand, this is a completely different type of learning. Taken together with 
the well-known role of 5-HT1A receptor in learning and memory [21], 
our results suggest that hippocampal 5-HT1A receptors likely cannot be 
used as a target to restore associative learning in an ASD. 

Usually, immobility in the tail suspension test is thought to reflect 
depressive-like behavior [85,86]. By contrast, in BTBR mice, reduced 
immobility time is more related to active stress avoidance rather than 
antidepressive-like behavior [80]. In our work, we did not demonstrate 
any impact of hippocampal 5-HT1A receptors on this type of autistic-like 
behavior. 

Very interesting results were obtained after our measurement of the 
effect of the 5-HT1A receptor overexpression on the expression of 5-HT7 
receptor. It is well known that 5-HT1A can form heterodimers with 5- 
HT7, which significantly affect 5-HT1A receptor activity [44]. This het-
erodimerization plays crucial role in the regulation of depressive-like 
behavior and in the response to antidepressant drugs [17,45,46]. In 
the current paper, we revealed that the 5-HT1A receptor overexpression 
in the hippocampus significantly raises 5-HT7 receptor mRNA and 

protein levels in this brain structure. Given that 5-HT1A/5-HT7 receptor 
heterodimerization promotes internalization of 5-HT1A receptor, 
thereby suppressing its function [44], it is possible that the 5-HT7 re-
ceptor overexpression may be a response of the brain aimed at attenu-
ating the excessively enhanced 5-HT1A receptor expression. It is 
noteworthy that earlier, we have shown that chronic 5-HT7 receptor 
stimulation lowers both 5-HT7 and 5-HT1A receptors expression in the 
frontal cortex and midbrain but not in the hippocampus [87]. It has been 
proposed that this phenomenon is linked with a low quantity of 
5-HT1A/5-HT7 heterodimers in the hippocampus [87], in agreement 
with evidence of moderate expression of 5-HT7 in this brain structure 
[44,46,88,89]. Nonetheless, this receptor may play an independent part 
in the regulation of autistic-like behavior, and the behavioral response to 
hippocampal 5-HT1A overexpression may be at least partially mediated 
by 5-HT7 receptor. This idea suggests that it would be worthwhile to 
further focus on the involvement of this receptor in ASD mechanisms. 
Additionally, the observed alterations of 5-HT7 receptor expression in 
the hippocampus possibly indicate that 5-HT1A/5-HT7 receptor hetero-
dimers are a possible target for ASD treatment. 

BDNF is now known to participate in the pathogenesis of many dis-
orders of the nervous system [27–33], and the interaction between 
BDNF and the brain 5-HT system is well documented [40]. We showed 
that the 5-HT1A receptor overexpression in the hippocampus of BTBR 
mice results in a significant decrease of TrkB receptor mRNA and protein 
levels in the hippocampus. It must be noted that in the majority of 
existing studies, different interventions result in unidirectional changes 
in the expression of 5-HT1A and TrkB receptors [90–93]. A knockout of 
5-HT1A receptor induces a reduction in TrkB receptor expression [94]. 
Taking into account the above-mentioned observation, our data on the 
significant decline of TrkB receptor mRNA and protein levels in the 
hippocampus of BTBR mice overexpressing hippocampal 5-HT1A re-
ceptor probably indicate an impairment of the 5-HT1A–TrkB receptors 
interaction in autism. On the other hand, 5-HT1A receptor over-
expression in the hippocampus of BTBR mice failed to alter the 
expression of BDNF, of its precursor proBDNF, and of proBDNF receptor 
p75NTR, implying that this cross talk between 5-HT1A receptor and the 
BDNF system is mediated by TrkB receptor. 

Our notion of the impaired 5-HT1A–TrkB interaction in autism is 
consistent with the results on reduced anxiety and ameliorated stereo-
typed behavior accompanied by TrkB receptor downregulation in BTBR 
mice; the latter findings contradict available literature data. In multiple 
articles, an association between a lowered TrkB receptor level and 
enhanced stereotyped behavior [95–97] and anxiety [98–101] has been 
documented. 

Thus, our results point to the importance of hippocampal 5-HT1A 
receptor for the regulation of stereotyped behavior and anxiety in BTBR 
mice: a widely used model of autism. Our data indicate that cross talk 
between brain 5-HT and BDNF systems—and between serotonin 5-HT1A 
and 5-HT7 receptors—participates in mechanisms of autistic-like 
behavior. 
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