Новосибирский государственный университет Институт химической биологии и фундаментальной медицины

Определение мутаций и их функциональной значимости в генах *BRCA1* и *BRCA2* у больных раком молочной железы и раком яичников

представление диссертационной работы по окончании аспирантуры специальность: генетика 03.02.07

Кечин А. А.

Научный руководитель:

к.б.н. Филипенко М. Л.

Рак молочной железы и рак яичников

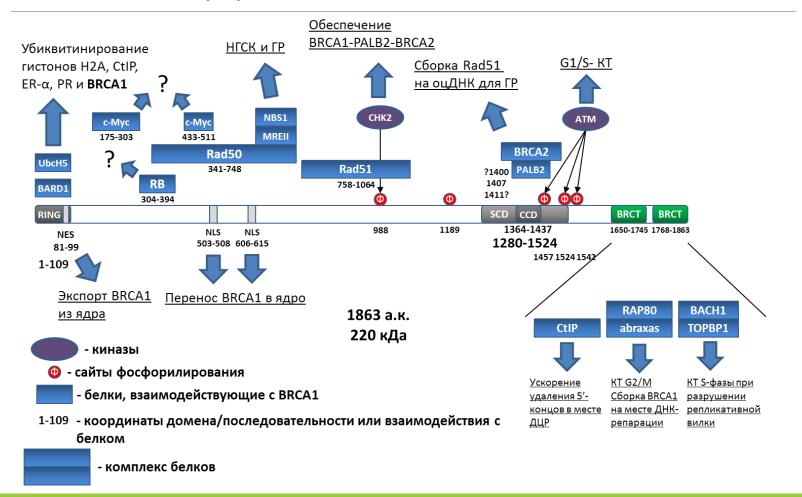
- Ежегодно 65 тыс. новых случаев РМЖ (~650 − мужчины) и 13 тыс − РЯ *
- Смертность от РМЖ 29 человек на 100 тыс населения, от РЯ 10 *
- 21.2% всех онкологий у женщин РМЖ, 4.4% РЯ *
- Мутации в BRCA1/2 повышают риск развития РМЖ с 12,4% до 40-80%,
 РЯ с 1,3% до 11-40% **
- Соматические мутации в BRCA1/2 в 4 раза реже, чем герминальные, у больных РМЖ (15% случаев) ***

^{*} Каприна АД, Старинского ВВ, Петровой ГВ (2016) Злокачественные новообразования в России в 2014 году (заболеваемость и смертность).

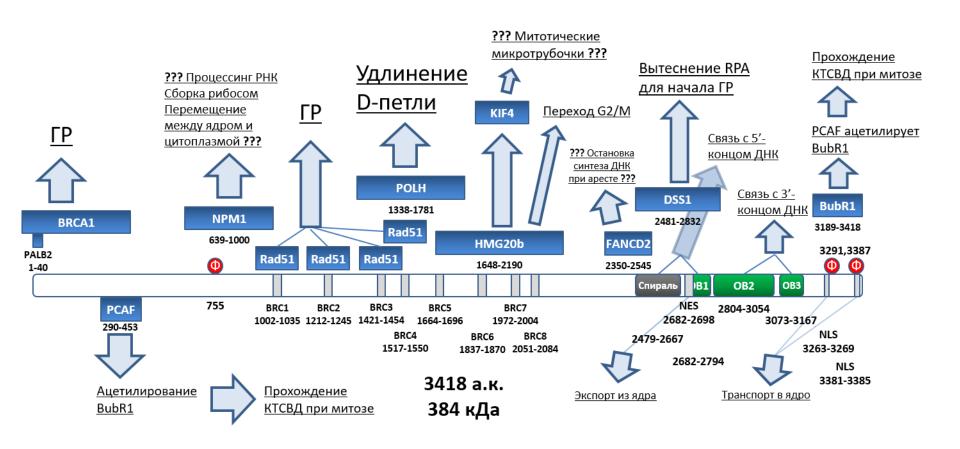
^{**} Ngeow J Eng C Warhin A Levy D Garber J et. al. (2013) Precision medicine in heritable cancer: when somatic tumour testing and germline mutations meet

^{***} Nik-Zainal S Davies H Staaf J Ramakrishna M Glodzik D et. al. (2016) Landscape of somatic mutations in 560 breast cancer whole-genome sequences.

Вклад генов *BRCA* в сравнении с другими генами. Функции BRCA1/2


BRCA1, 1863 a.o. 220 кДа

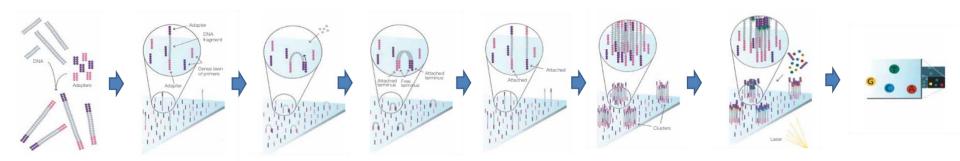
- ДНК-репарация двуцепочечных разрывов (ДЦР) с помощью негомологичного соединения концов (НГСК) и гомологичной рекомбинации (ГР)
- Прохождение контрольных точек (КТ) G1-S, G2-M
- Регуляция транскрипции
- Перестройка хроматина


BRCA2, 3418 a.o. 384 кДа

- ДНК-репарация ДЦР с помощью ГР
- Контроль митоза

BRCA1. Строение, функции и взаимодействия

BRCA2. Строение, функции и взаимодействия



Проблемы выявления мутаций в *BRCA1/2*. Секвенирование нового поколения (NGS)

Длина кодирующей последовательности *BRCA1* — 5592 п.о., *BRCA2* — 10257 п.о.

Число экзонов *BRCA1* — 24, *BRCA2* — 27

Слабая представленность хотспот-мутаций (не более 11-16%) *

Рисунки из Technology Spotlight Illumina®

^{*} John EM, Miron A, Gong G, et al. (2007) Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups.

^{*} Kang E, Seong M-W, Park SK, et al. (2015) The prevalence and spectrum of BRCA1 and BRCA2 mutations in Korean population: recent update of the Korean Hereditary Breast Cancer (KOHBRA) study.

Статистика мутаций в базах данных. Проблема клинической значимости

- Известно более 9000 мутаций в генах BRCA1/2. Для половины из них клиническая значимость не определена
- Сегрегационный анализ затруднен для большинства мутаций
- Применяются методы по определению функциональной значимости
- Анализ локализации BRCA1 в ядре один из последних и релевантных подходов *
- Обычно линии клеток получают от пациентов
- С технологией CRISPR/Cas9 возможно получение линий клеток, несущих изучаемую мутацию

^{*} Loke J, Pearlman A, Upadhyay K, et al. (2015) Functional variant analyses (FVAs) predict pathogenicity in the BRCA1 DNA double-strand break repair pathway.

Цели и задачи

Цель: выявление мутаций и определение их функциональной значимости в генах *BRCA1* и *BRCA2* больных раком молочной железы и раком яичников на выборке пациентов Российских онкологических центров.

Задачи:

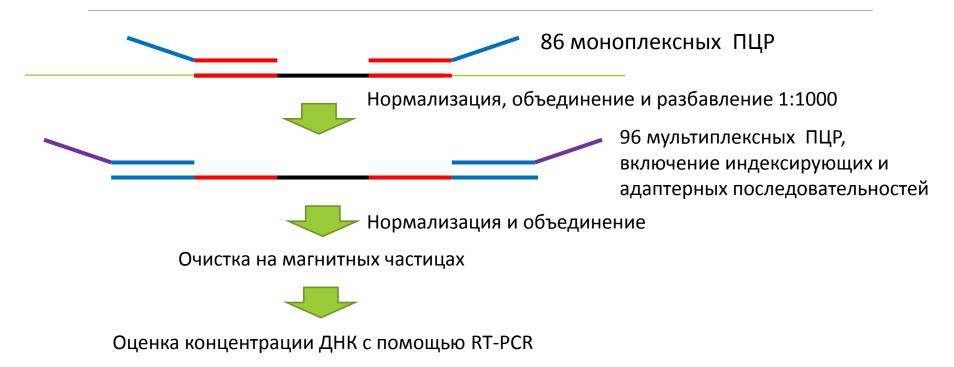
- 1. Оптимизировать метод приготовления библиотеки кодирующих последовательностей генов *BRCA1/2*, основанный на амплификации выбранных фрагментов и предназначенный для последующего секвенирования на MiSeq Illumina. Разработать программу автоматической обработки получаемых NGS-данных.
- 2. Выявить мутации в генах *BRCA1/2* в выборке больных раком молочной железы и раком яичников, проживающих на территории Российской Федерации с целью определения частот встречаемости мутаций, а также выбора мутаций с неопределенной клинической значимостью.
- 3. С помощью технологии геномного редактирования CRISPR/Cas9 создать линии человеческих клеток, несущие в генах *BRCA1/2* выбранные мутации в гомозиготном и гетерозиготном состоянии.

Цели и задачи

Цель: выявление мутаций и определение их функциональной значимости в генах *BRCA1* и *BRCA2* больных раком молочной железы и раком яичников на выборке пациентов Российских онкологических центров.

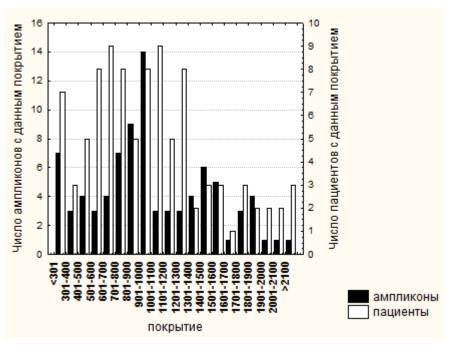
Задачи:

4. Оценить функциональную значимость выбранных мутаций с помощью исследования уровня локализации комплексов с BRCA1/2 в ядре.


Образцы ДНК пациентов

Выборки пациентов:

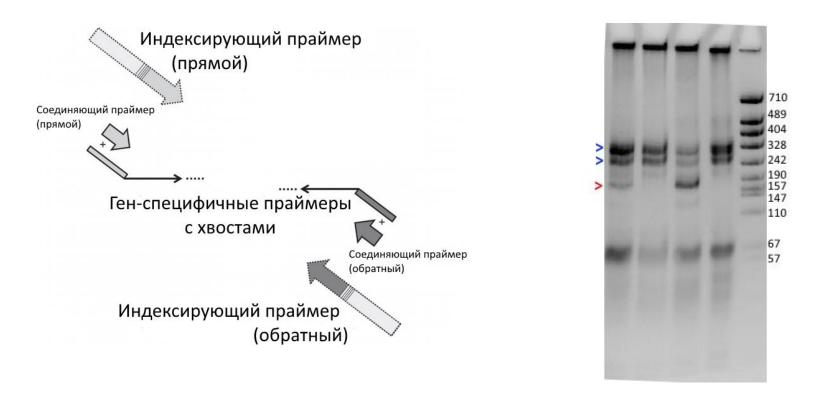
- 96 больных РМЖ, пациенты Алтайского краевого онкологического диспансера (были выбраны только пациенты без хотспот-мутаций);
- 41 больной РЯ, пациенты ФГБУ «Российский онкологический научной центр им. Н.Н. Блохина»
- > 31 больной РЯ, пациенты Барнаульского филиала ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина»
- 7 больных РМЖ, пациенты ФГБУ «НИИ онкологии им. Н.Н. Петрова».
- З контрольных образца, предоставленные AstraZeneca
- 1 больной рак грудной железы (мужчина)
- 82 пациента больные РЯ (программа OVATAR)


Всего: 261 пациент

Метод приготовления библиотеки №1

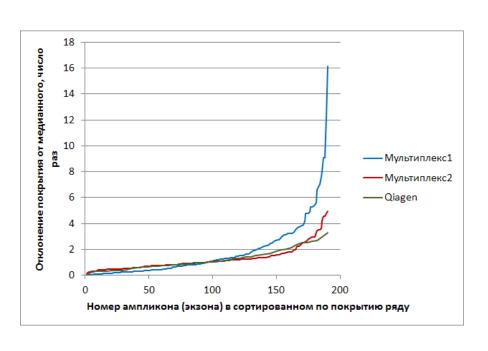
Всего данным методом были приготовлены библиотеки для 96 образцов ДНК

Метод приготовления библиотеки №1. Оценка покрытия


Среднее покрытие по ампликонам - 1012,3 (182-2270)

Среднее покрытие по пациентам — 1019,2 (240-4563)

Данный метод не требует больших количеств ДНК


- + Подходит для различных источников ДНК пациентов, кроме парафинизированных гистологических блоков
- Не подходит для гистологических блоков, все ампликоны разной длины

Мультиплексный метод приготовления библиотеки

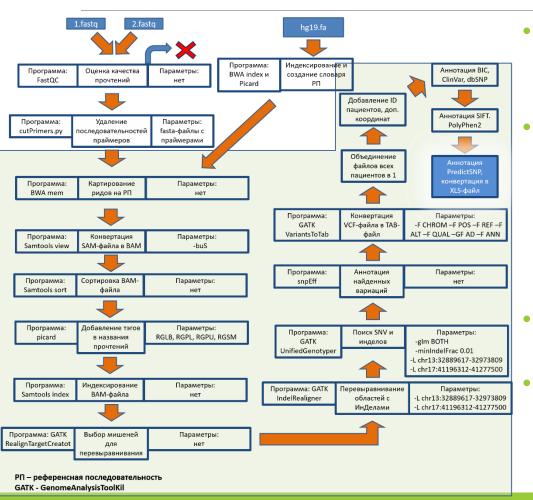
Всего данным методом были приготовлены библиотеки для 83 образцов ДНК

Мультиплексный метод приготовления библиотеки. Оценка покрытия

Медианное покрытие по ампликонам - 85,8 (0-1387), σ =2,22

Медианное покрытие по ампликонам после изменения концентраций праймеров — 835 прочтений (63-4107), σ =1,61

Медианное покрытие по экзонам – 801 (27-2634), σ =0,81


Коммерческим набором были приготовлены библиотеки для 82 образцов ДНК

Оптимизация алгоритма анализа данных NGS генов *BRCA1/2*

- BWA → GATK → Freebayes/Samtools/GATK → ANNOVAR → BIC, dbSNP, 1000Genomes
- 96 образцов
- Метод приготовления библиотеки №1
- ▶ 16 образцов контрольные; кодирующие последовательности BRCA1/2 были полностью секвенированы по Сэнгеру
- Сравнили Freebayes, Samtools и GATK

Программа картирования	Программа выявления мутаций	Пороговое покрытие позиции	Мин. % прочтений с альт. аллелем	ВП	ЛП	ЛО
	FreeBayes	100	10	61	32	8
			30	57	3	12
		20	10	65	36	4
BWA, IndelRealignment			20	63	22	6
			30	61	3	8
			40	60	3	9
	SAMtools	100	10	55	3	14
			30	55	3	14
		20	10	59	9	10
			20	59	3	10
			30	59	3	10
			40	59	3	10
	GATK*	100	10	64	6	5
			30	56	3	13
		20*	10	68	7	1
			14*	68*	4*	1*
			20	65	3	4
			30	60	3	9
			40	60	3	9

Пакет анализа данных NGS генов *BRCA1/2*

- Введен этап удаления последвательностей праймеров из прочтений;
- Аннотация по расположению в генах и влиянию на аминокислотную последовательность кодируемого белка проводится с помощью snpEff;
 - Добавлена аннотация с помощью PredictSNP
 - Многопотоковость анализа

Пакет анализа данных NGS генов *BRCA1/2*. Сравнение с аналогичными пакетами

Программа	Число ВП	Число ЛП	Число ЛО	Чувств.	Время анализа 96 образцов
BRCAanalyzer	14	0	0	100%	150 мин
GeneRead *	12	0	2	85,7%	80 мин.

ВП – верноположительные

ЛП – ложноположительные

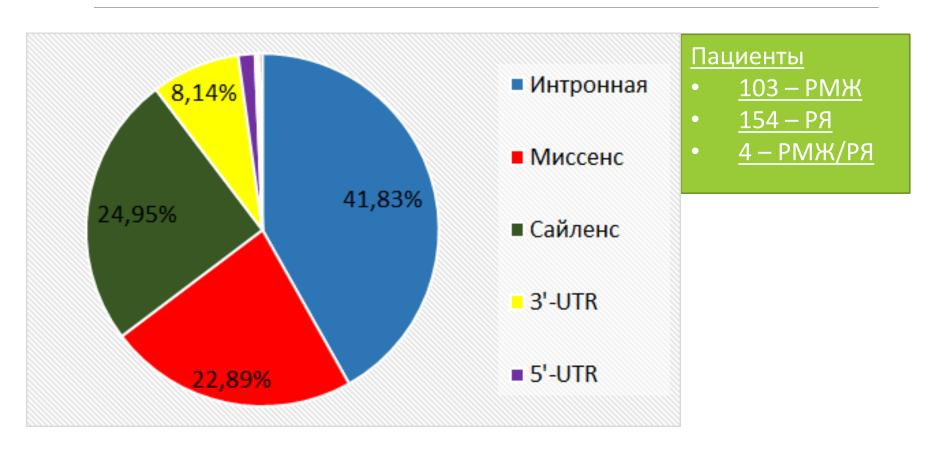
ЛО - ложноотрицательные

^{*} Qiagen GeneRead Targeted Exon Enrichment Panel Data Analysis http://ngsdataanalysis.sabiosciences.com/NGS2/

Программа по удалению последовательностей праймеров из прочтений

- Праймер может быть удален до 10 позиций от начала или конца прочтения
- Допускается до 5 замен, инсерций или делеций в последовательности праймера. В других программах используется относительное число ошибок
- Когда найдено 4 праймера (по 2 на каждое прочтение из пары),
 производится выравнивание и вычисляется число ошибок
- В конце пользователь получает статистику ошибок в праймерах

Nº	Программа	Время вырез. из 9311 пар проч.	Число ост. проч.
1	cutPrimers	43 сек.	8443
2	cutadapt	25 сек.	5772
3	Trimmomatic	30 сек.	150??


Выявленные мутации. Патогенные

- Выявлено 27 патогенных мутаций: 4 РМЖ (3,8%),
 21 РЯ (13,6%), 2 РМЖ/РЯ
- ▶ 14 в гене BRCA1, 13 BRCA2
- 17 (63%) фреймшифты, 7 (26%) нонсенсмутации, 2 (7,4%) – нарушают сайт сплайсинга, 1 (3,7%) – миссенс
- 11 мутаций были найдены впервые

Пациенты

- 104 РМЖ
- 154 РЯ
- 3 PMЖ/PЯ

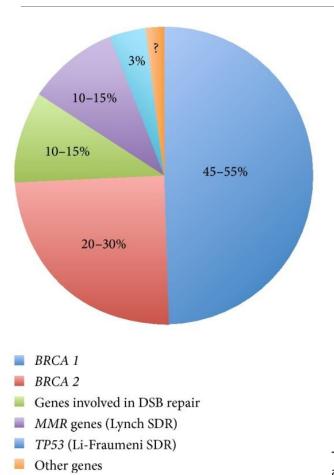
Выявленные мутации. Общая статистика

Выявление мутаций. Неизвестная клиническая значимость

- Всего 18 мутаций с неизвестной клинической значимостью
- 16 миссенс-мутации, 2 рядом с сайтом сплайсинга (1-3 экзона, 3-8 интрона)
- 12 мутаций располагаются в районе взаимодействия белка BRCA1 или BRCA2 с другими белками или в одном из его доменов
- Для 6 мутаций было предсказано нарушение структуры белка с помощью PredcitSNP

Выводы

- 1. Проведена оптимизация метода приготовления библиотеки кодирующих последовательностей генов *BRCA1/2*, основанного на амплификации выбранных фрагментов и предназначенный для последующего секвенирования на MiSeq Illumina. Показано, что метод позволяет получить высокое покрытие всех экзонов генов *BRCA1/2*.
- 2. Разработан пакет программ автоматической обработки получаемых NGS-данных. Входящая в состав пакета программа по удалению последовательностей праймеров из прочтений имеет более высокую точность обнаружения праймеров. Алгоритм картирования прочтений и выявления мутаций разработанного пакета показал более высокую чувствительность (100% против 86%) по сравнению с коммерчески доступным GeneRead (Qiagen).
- 3. Чувствительность и специфичность метода были оценены на 16 больных раком молочной железы и составили 98,6% и 94,4%, соответственно.


- 4. Определены мутации в генах *BRCA1/2* в выборке больных раком молочной железы и раком яичников (всего 261 пациент), проживающих на территории Российской Федерации. Выявлено 27 патогенных мутаций у 27 пациентов. Большинство мутаций (17) нарушали рамку считывания гена и представляли собой делеции и дупликации одного или нескольких нуклеотидов. Также часто выявляемыми мутациями были мутации, приводящие к образованию нового стоп-кодона (7).
- 5. Было выявлено 11 новых мутаций, ранее не описанных в литературе, что подтверждает необходимость использования NGS для скрининга мутаций у больных РМЖ и РЯ.
- 6. Выбрано 18 мутаций с неизвестной функциональной значимостью, выявленных на анализируемых выборках пациентов для дальнейшего функционального анализа. 12 из них располагаются в районе взаимодействия белка с другими белками или в одном из его доменов, возможно, нарушая его структуру или функцию. Для 6 мутаций *in silico* было предсказано нарушение структуры белка, однако требуется анализ функциональной значимости *in vitro*.

Список публикаций

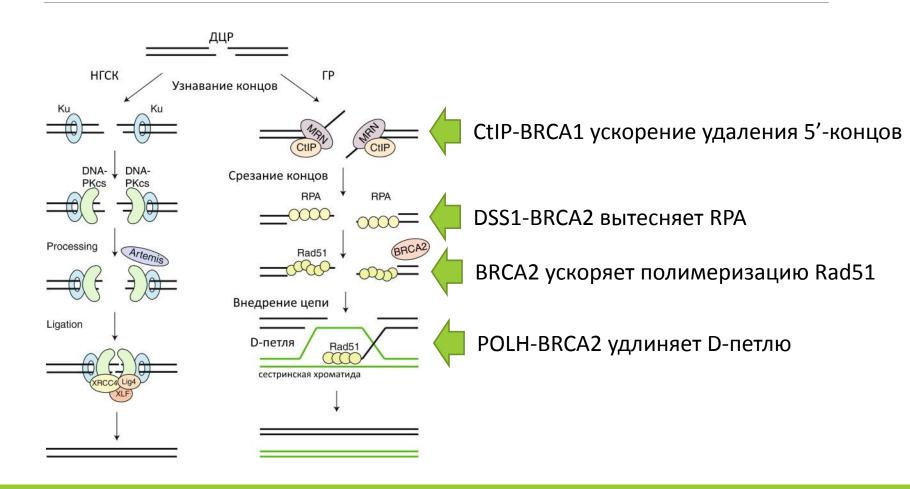
- 1. Н.А. Ермоленко[#], У.А. Боярских[#], А.А. Кечин[#], Л.Ф. Лазарев, В.Д. Петрова, А.М. Мазитова, Н.Е. Кушлинский, М.Л.Филипенко. «Опыт клинического использования платформы MiSeq Illumina для диагностики мутаций *BRCA1* и *BRCA2*». Технологии живых систем, 2015 г., т. 12, №1.
- 2. N.A. Ermolenko[#], U.A. Boyarskikh[#], A.A. Kechin[#], A.M. Mazitova, E.A. Khrapov, V.D. Petrova, A.F. Lazarev, N.E. Kuchlinskii, M.L. Filipenko. «Massive Parallel Sequencing for Diagnostic Genetic Testing of BRCA Genes a Single Center Experience». APJCP, 2015, 16 (17), 7935-41.
- 3. А.А. Кечин, У.А. Боярских, Н.А. Ермоленко, Е.А. Храпов, М.Л. Филипенко. «Способ определения нуклеотидных последовательностей экзонов генов *BRCA1* и *BRCA2*». Патент на изобретение. Регистрационный номер: 2015153232.

Дополнительные слайды

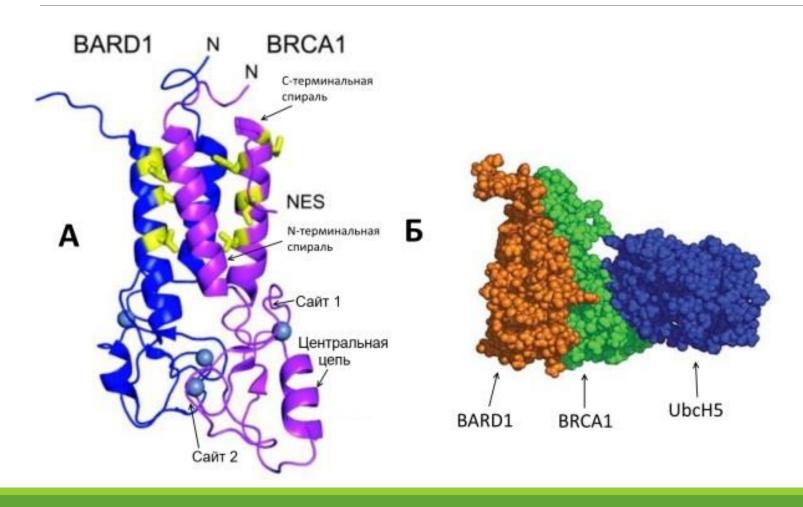
Вклад генов *BRCA* в сравнении с другими генами. Функции BRCA1/2

Повышают риск развития РМЖ и РЯ не только гены *BRCA1/2,* однако их вклад наибольший

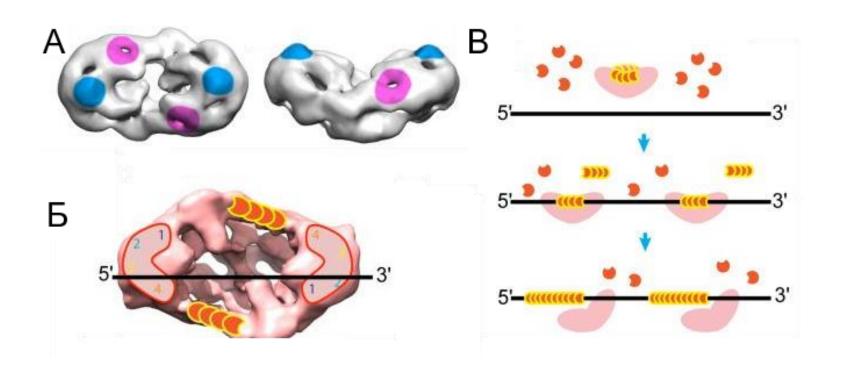
BRCA1, 1863 a.o. 220 кДа


- ДНК-репарация ДЦР с помощью НГСК и ГР
- Прохождение КТ G1-S, G2-M
- Регуляция транскрипции
- Перестройка хроматина

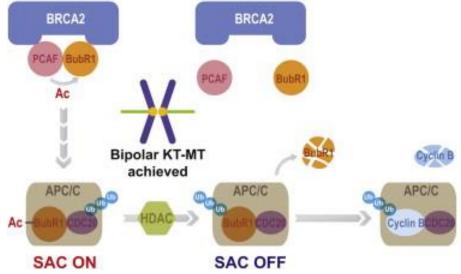
BRCA2, 3418 a.o. 384 кДа


- ДНК-репарация ДЦР с помощью ГР
- Контроль митоза

Toss A Tomasello C Razzaboni E Contu G Grandi G et. al. Hereditary ovarian cancer: not only BRCA 1 and 2 genes.


Схема репарации ДЦР с помощью ГР и НГСК

Модель взаимодействия BRCA1, BARD1 и UbcH5



Модель взаимодействия BRCA2 и Rad51

Взаимодействие BRCA2, PCAF и BubR1

BRCA2 reinforces BubR1 acetylation

- ВubR1 проверяет прикрепленность нитей ВД к кинетохорам
- Если есть неприкрепленные, то BubR1 ингибирует E3-Ubлигазу APC/C → задержка протеолиза циклина-D
- Если все ОК, BubR1 после КТСВД деацетилируется, убиквитинируется и протеализируется
- Если PCAF не ацетилирует BubR1, то он разрушается

Choi E, Park P-G, Lee H-O, et al. (2012) BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation

О гомозиготных мутациях в BRCA1/2

Мыши гомозиготные по одной из мутаций в BRCA1

Гибель эмбрионов *

Choi E, Park P-G, Lee H-O, et al. (2012) BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation