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Leaf rust (LR) and stem rust (SR) are harmful fungal diseases of bread wheat (Triticum aestivum L.). The purpose of this
study was to identify QTLs for resistance to LR and SR that are effective in two wheat-growing regions of Kazakhstan.
To accomplish this task, a population of recombinant inbred lines (RILs) of ‘Pamyati Azieva X Paragon’was grown in the
northern and southeastern parts of Kazakhstan, phenotyped for LR/SR severities, and analyzed for key yield compo-
nents. The study revealed a negative correlation between disease severity and plant productivity in both areas. The
mapping population was genotyped using a 20,000 Illumina SNP array. A total of 4595 polymorphic SNP markers were
further selected for linkage analysis after filtering based on missing data percentage and segregation distortion. Win-
dows QTL Cartographer was applied to identify QTLs associated with LR and SR resistances in the RIL mapping popula-
tion studied. Two QTLs for LR resistance and eight for SR resistance were found in the north, and the genetic positions
of eight of them have matched the positions of the known Lr and Sr genes, while two QTLs for SR were novel. In the
southeast, eight QTLs for LR and one for SR were identified in total. The study is an initial step of the genetic mapping
of LR and SR resistance loci of bread wheat in Kazakhstan. Field trials in two areas of the country and the genotyping
of the selected mapping population have allowed identification of key QTLs that will be effective in regional breeding
projects for better bread wheat productivity.
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JlnctoBas n ctebneBas pXKaBUMHbI ABNATCA BPEJOHOCHBIMU TPUOHBIMM Gone3HAMU MArkoi nwenwnubl (Triticum
aestivum L.). Llenbto gaHHOro nccnepaoBaHmns 6bina MaeHTUOUKaLMA NOKYCOB KOMYeCTBEHHbIX Npr3sHakos (JIKM), ca-
3aHHbIX C YCTOMUMBOCTbIO K 60N1e3HAM, B ABYX PErroHax Bo3fenblBaHMA NweHnLbl B KasaxctaHe. 1na 3Toro KapTtupyio-
was nonynauna Mamatn Asnesa x MaparoH, coctoAwasn 13 98 peKoMOUHAHTHO-UHOPEHbIX IMHUIA U BblpalLMBaemas
Ha ceBepe 1 toro-BocToke KasaxctaHa, 6bina deHoTMNMPOBaHa No CTeneHn NopaXeHWs NNCTOBOW 1 CTe61eBON pxKaB-
YMHOW 1 MpOoaHanM3npoBaHa Mo KoYeBbIM KOMMOHEHTaM ypOXKalHOCTU. BbiABNeHa oTpuuaTenbHaa Koppenauua
MeXay CTeNeHblo NopaxeHuna 6051e3HbI0 N NPOAYKTUBHOCTbLIO pacTeHU B 060mx pervioHax. Kaptupytowaa nonynauma
6bln1a reHOTUNMpPOBaHa ¢ ncnonb3osaHem HK mukpounna lllumina Ha 20000 mapkepos OHI (oAHOHYKNEOTUAHDBIV
nonumopdursm). na ganoHenwero aHanmsa otobpaHo 4595 nonumopdHbix mapkepos OHI. Ona naeHtndrkaumm
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QTLs for resistance to leaf and stem rusts
using bread wheat population ‘Pamyati Azieva x Paragon’

JIKM, cBSI3aHHbIX C YCTOMUMBOCTBIO KapTUpYloLleid Nonynsauun K JIMCTOBOW U CTebneBol pXKaBuMHaM, UCMONb30Ba-
nacb nporpamma Windows QTL Cartographer v2.5. B ceBepHOM pervioHe 6b1in o6Hapy»eHbl aga JIKIM yctonumsoctn
K IMCTOBOW pkaBunHe 1 BoceMb JIKM - K ctebneBoit. Jlokanvsaumm BOCbMU U3 HAX COBMANU € NO3ULMAMN N3BECTHbIX
reHos Lrn Sr. isa JIKIM gna ctebnesoit pxkaBUnHbI 6bI711 0603HaUYEHbI Kak HOBble. [111A 0r0-BOCTOYHOIO perroHa obHa-
py»keHo Bocemb JIKI, accoUMMPOBaHHbIX C YCTONUMBOCTBIO K IMCTOBOW PXKaBUMHE, Y OAVH — K cTebneBo. HacToswee
nccnefoBaHme ABNAETCA NEePBbIM LWArOM B reHETUYECKOM KapTUPOBaHWM JIOKYCOB YCTONYMBOCTY K IMCTOBON U CTe-
6neBoVi pKaBUYMHaM MArKol nweHnLpbl B KasaxctaHe. MoneBble nccnefoBaHUs B IBYX PErMOHAxX CTPaHbl U reHOTUNU-
poBaHVie BbIOpaHHON KapTupytoLLein Nnonynaumuy No3Bonnamv BbiAaBUTb Kntouesble JTIKM, KoTopble 6yayT 3dpeKTUBHbI B
pervoHanbHbIX CeNleKLMOHHbIX NPOeKTax, HanpaB/ieHHbIX Ha yyuylleHre NPOAYKTUBHOCTU MATKOW MNWEHNLbI.
KnioueBble cioBa: MArkasa MeHULa; KapTUPOBaHUE; PEKOMOUHAHTHO-UHOPEHbIE IVHUW; TOKYCbl KONIMYECTBEHHbIX
NPV3HAKOB; NNCTOBAA PXKaBUMNHA; CTebeBas pXkaBurHa.

Introduction

Wheat is one of the most important cereal crops in the World
and Kazakhstan (http://www.fao.org). In Kazakhstan wheat
is grown on about 13 million hectares annually. The country
produces up to 20-25 million tons of bread wheat per year,
and exports up to 5—7 million tons of the grain (http://stat.gov.
kz). However, an annual infection of bread wheat by fungal
diseases is causing a serious yield reduction (Koyshybaev et
al., 2017).

The three most common wheat fungal pathogens in the
world are Puccinia triticina Erikss. (leaf rust), Puccinia grami-
nis Pers. f. sp. tritici Erikss. & Henn. (stem rust), and Puccinia
striiformis Westend. f. sp. tritici Eriks. (stripe or yellow rust)
(Bushnell, Roelfs, 1984). P. recondita is now recognized as
one of the most dangerous pathogens in wheat production
worldwide, causing significant yield losses over the large
geographical areas (Bolton et al., 2008). The infection with any
rust fungus results in decreased numbers of kernels per spike
and lower kernel weights due to the parasitic consumption of
host nutrients, which leads to apparent yield losses and poor
quality of the grains (Afzal et al., 2008).

In Kazakhstan, leaf rust (LR) and stem rust (SR) together
cause the most severe yield losses in bread wheat (Rsaliev
et al., 2005). When the epidemic develops at the early stage,
and the infection persists until wheat is fully ripe, the yield
loss increases up to 40—-60 % (Koyshybaev, 2010). It happens
because of the favorable climate conditions for the spreading
of P. recondita in the fields, especially in south and south-east
of Kazakhstan, where the high temperature and water defi-
ciency stimulate the expansion of spores (Koyshybaev, 2010).
As for the SR, the constantly widening areal of aggressive
stem rust race Ug99 creates a threat to the food security of
the entire planet (Singh et al., 2011; Bhardwaj et al., 2014),
including Kazakhstan (Shamanin et al., 2010; Rsaliev, 2011).
With epiphytotic SR development, the yield losses of spring
wheat can potentially reach 40-50 % (Koyshybaev, 2010;
Soko et al., 2018).

One of the most effective ways to protect wheat from LR
and SR is the development of resistant cultivars with high yield
potential (Ellis et al., 2014). In the last 100 years, approxi-
mately 80 LR resistance genes designated from Lr/ to Lr78,
Lracl04, and Lracl24, have been identified and described
in common wheat, durum wheat and diploid wheat species
(Mclntosh et al., 1998, 2007, 2017). In the last 10 years in
Kazakhstan, there were active research works on the identifi-
cation of genes, which are effective against LR, screening of
wheat cultivars for the presence of resistance gene (Kokhme-
tova et al., 2009; Akhmetova et al., 2015) and investigation
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on population of P. recondita in the country and neighboring
territories (Agabaeva, Rsaliev, 2013; Gultyaeva et al., 2018).

As for the SR, to date, nearly 60 Sr genes have been identi-
fied in wheat and its wild relatives (McIntosh et al., 2017). Al-
most all of the wheat cultivars approved for use on the territory
of Kazakhstan demonstrate poor resistance to SR pathogens
(Koyshybaev et al., 2017). For this reason, the analysis of SR
and methods of its prevention in Kazakhstan are an important
issue and require comprehensive genetic and breeding studies.
Several experiments were conducted to search SR resistance
sources in wheat germplasm of Kazakhstan (Rsaliev, 2011;
Kokhmetova, Atishova, 2012). However, no efforts were done
to identify effective genes and quantitative trait loci (QTL)
based on genetic mapping approach. Genetic mapping is an
effective tool for the identification of QTLs that are respon-
sible for natural phenotypic variations in complex traits, such
as resistance to rust diseases (Goutam et al., 2015; Xu et al.,
2017). During the past two decades, linkage mapping has been
commonly used in various plant species, numerous wheat
dense genetic maps were developed (Yang et al., 2017), and a
large number of QTL have been cloned or tagged (Price, 2006).

The purpose of this study was the identification of QTL
for LR and SR resistance by using 98 recombinant inbred
lines (RILs) of ‘Pamyati Azieva x Paragon’ mapping popula-
tion (MP). As these lines were tested in environmental condi-
tions of North and South-East Kazakhstan, it was expected
that important insights of the genetic control for two types of
rust disease resistance in bread wheat will be revealed. This
work is a continuation of our recent studies of bread wheat
undertaken in our research organization (Turuspekov et al.,
2017a, b).

Materials and methods

‘Pamyati Azieva x Paragon’ mapping population. The MP
comprising of 98 Fy RILs was assembled via crossing be-
tween two spring wheat cultivars — ‘Pamyati Azieva’ (PA)
and ‘Paragon’ (P). These two cultivars were chosen because
of their different genetic background and differences in mor-
phological traits. The first parental cultivar is Russian medium-
early spring wheat cultivar ‘Pamyati Azieva’ recommended
for the Western Siberian region (https://reestr.gossort.com),
approved for commercial cultivation in the North Kazakhstan
(http://www.goscomsort.kz/index.php/ru), and susceptible
to LR and SR. The second parental cultivar was a modern
UK elite spring wheat cultivar ‘Paragon’ that was used as
a key parent for Wheat Genetic Improvement Programme
(http://www.wgin.org.uk) resources but poorly studied for
the resistance to LR and SR. The MP, as well as the genetic
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map, was developed within ADAPTAWHEAT project in
greenhouse conditions by using facilities of the John Innes
Centre (Norwich, UK) during 2011-2015 (https://www.jic.
ac.uk/adaptawheat).

Evaluation of the MP for variation in agronomic traits,
and LR/SR severity in South-East and North Kazakh-
stan. Field evaluations of the MP were conducted in North
Kazakhstan agricultural experimental station (North Kazakh-
stan region) and Kazakh Research Institute of Agriculture
and Plant Industry (South-East Kazakhstan, Almaty region).
Ninety-eight RILs, the parental cultivars (‘Pamyati Azieva’
and ‘Paragon’), and standard check cultivars (‘Astana’ and
‘Omskaya 35’ in the North, and ‘Kazakhstanskaya 4’ and
‘Kazakhstanskaya rannespelaya’ in the South-East) were
evaluated in 2018 under field conditions for resistance to LR
and SR, as well as for key adaptation traits and yield compo-
nents. The population was planted at each site in randomized
triplicated experiments. Plants were grown in 15 cm distance
between rows and 5 cm distance between plants within a
row. Each row contained 25 plants. In the field conditions
the MP was tested using 11 traits, including HT (heading
time), MT (seed maturation time), PH (plant height), PL (pe-
duncle length), SL (spike length), NPS (number of produc-
tive spikes per plant), NKS (number of kernels per spike),
WKS (weight of kernels per spike), TKW (thousand kernels
weight), WKP (weight of kernels per plant), YSM (yield per
square meter).

Evaluation of rusts resistance in both locations was con-
ducted in two randomized replicates with a natural source of
infection. LR and SR resistance was evaluated on two growth
stages — phase of grain formation on 75 of Zadoks scale and
at the beginning of grain ripening on 83 of Zadoks scale (Za-
doks et al., 1974). Averaged values for both diseases in two
regions were calculated. Field infection response of the test
materials was assessed visually. In both regions assessment of
resistance/susceptibility levels was performed using the scale
of Stakman (Stakman et al., 1962) for SR, the scale of Mains
and Jackson (Mains, Jackson, 1926) for LR. The severity of
rust infection on leaf and stem surfaces was assessed using the
modified Cobb scale (Peterson et al., 1948; Roelfs et al., 1992).
To meet the data format required for association analysis, the
conventional scale was converted to the 0-9 linear disease
scale described by Zhang and co-authors (Zhang et al., 2011).
Pearson correlation analysis between agronomic traits and
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SR/LR severity was performed using the R statistical platform
(https://www.r-project.org).

Linkage mapping and QTL analysis. Genomic DNA for
98 RILs and their parental cultivars was extracted from seed-
lings using the cetyltrimethyl ammonium bromide (CTAB)
method (Doyle J.J., Doyle J.L., 1990) and genotyped with
the Illumina’s iSelect 20K SNP array at the TraitGenetics
Company (TraitGenetics GmbH, Gatersleben, Germany).
MapChart v2.32 software was used to draw the genetic map
(Voorrips, 2002). Each repetition experiments and their aver-
age results for studied traits in each environment were used
for QTL analysis. For analysis of QTL, the Windows QTL
Cartographer v2.5 software (http://statgen.ncsu.edu/qtlcart/
WQTLCart.htm) with composite interval mapping (CIM)
method at a logarithm of the odds (LOD) for the threshold
of 3.0 was used.

Results

Phenotypic variations of resistance to stem and leaf rusts
in two environmental conditions. Generally, mean values of
SR and LR severity of two parental cultivars and 98 RILs in
two regions demonstrated non-equal distribution with devia-
tions towards resistance in the North and susceptibility in the
South-East for both diseases (Fig. 1). Out of 98 RILs, fourteen
lines were recognized as fully resistant to SR (1 point), 67 lines
as moderate resistant on the level of 2-3 points, and only one
line was determined as susceptible with 8 points of infection
severity (see Fig. 1, a). In the South-East area, the severity
of SR infection at the stage of grain ripening is higher and
less diverse than in the North. SR scores of RILs at the adult
plant stage were not normally distributed and were strongly
skewed towards susceptibility. Here, 89 lines were affected
by stem rust on the level of 8 points, with no lines identified
as resistant (see Fig. 1, a).

As per the LR resistance, parents and lines of the MP
grown in North Kazakhstan had demonstrated clear evidence
of infection at the phase of grain ripening. The majority of
RILs (81 lines) was identified as moderately resistant with
the severity level on 2-3 points. The remaining six lines were
resistant, and 11 lines had shown intermediate (4—5 points)
level of infection (see Fig. 1, b). In the region of South-East
Kazakhstan, as in the case of stem rust, the severity of leaf
rust infection was significantly higher than in the northern
part of the country.

b 60 B SEKaz
B NKaz
® sof
o
v
L
£ 40
wv
g
= 30}
b
s}
8 20
€
2 10}
0

9 0o 1 2 3 4 5 6 7 8 9
Severity

Fig. 1. Phenotypic variations of recombinant inbred lines for stem (a) and leaf rust (b) severity in two environments.

The severity of infections was determined based on the 9-point scale. SEKaz - South-East Kazakhstan, NKaz - North Kazakhstan.
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Coefficients of pairwise Pearson correlations (r) between the leaf and stem rusts infections severities
and adaptation/yield-related traits in RILs population grown in North Kazakhstan

Parameter SR SR
(grain formation) (grain ripening)
HT_0254* ...................................... g 0072 .....................
MT0295** ..................................... - 0191 ......................
PH_0061 ......................................... - 0219* ...................
p|__0047 ........................................ - 0037 .....................
Npso]sg ......................................... - 0113 .....................
5|_0208* 0098 .....................
NF5_0180 ........................................ - 0113 .....................
NKS_OMS ........................................ - 0”7 .....................
WK50053 ......................................... - 0144 .....................
WKPOOW ......................................... - 0214* ...................
TKWOO31 ......................................... - 0168 .....................

SR LR

(average) (average)
.................... 8 00590129
.................... - 02”*_0054
.................... - 0214*_0123
.................... - 0042_0085
.................... - 0060_0215*
01240019 ......................................
.................... - 0155_0094
.................... - 0151_0237*
.................... - 0141_0295**
.................... - 0230*_0168
.................... - 0193_0059

Notes: SR, stem rust severity; LR, leaf rust severity; HT, heading time; MT, maturation time; PH, plant height; PL, peduncle length; NPS, number of productive
spikes per plant; SL, spike length; NFS, number of fertile spikelets per spike; NKS, number of kernels per spike; WKS, weight of kernels per spike; WKP, weight of

kernels per plant; TKW, thousand kernels weight.
* Significance level at p < 0.05; ** significance level at p < 0.01.

Correlation analysis for resistance to LR/SR and agro-
nomic traits. North Kazakhstan is the biggest wheat-growing
area in Kazakhstan that gives around 85 % of bread wheat
grain annually (http://stat.gov.kz). Therefore, a separate evalu-
ation of the relationship between yield components and rust
indexes was performed (see the Table).

The severity of LR and SR infections measured on two
growth stages and averaged values revealed generally nega-
tive influence on all key adaptation and yield-related traits.
In North Kazakhstan, the averaged level of SR infections
was negatively correlated with three important traits — MT,
PH, and WKP. At the same time, the level of SR infections
measured during the phase of grain formation demonstrated
a negative correlation with HT, MT, while measures at the
beginning of grain ripening were negatively correlated with
PH and WKP. LR severity made a significant negative impact
on NPS, NKS, and WKS.

Genetic linkage map of the studied RILs population.
A total of 4595 polymorphic SNP markers from 21 chromo-
somes were used in the current study. All SNPs showed a
good fit to 1:1 segregation in the RILs mapping population
(p > 0.001 in Chi-squared test). The distribution of markers
among genomes was the following: A genome — 1939 SNPs,
B genome — 2099 SNPs, and D genome — 557 SNPs. The
lengths of genetic maps for individual chromosomes ranged
from 218.9 ¢cM (chromosome 3B) to 16.9 ¢cM (chromoso-
me 4D). Chromosome 2B was identified as the densest with
563 SNPs per 150.6 cM (average spacing 0.27 cM), while
chromosome 5D demonstrated the least markers density with
the average 2.65 cM between neighboring SNPs.

QTL analysis of resistance to LR and SR. Information
about QTL identified in this research work is summarized in
Supplementary 11. Ten putative QTL for LR resistance were
identified in seven different chromosomes (Fig. 2, Supple-

T Supplementary Materials 1 and 2 are available in the online version of the
paper: http://www.bionet.nsc.ru/vogis/download/pict-2019-23/appx20.pdf
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mentary 1). The majority of QTL was revealed in South-East
Kazakhstan, where the severity of LR was on a maximum
level. Four of QTL for LR resistance were located on 3B chro-
mosome on short distances from each other. One QTL is
observed on 3A chromosome while remaining five QTL were
on chromosomes 1B, 1D, 2A, 2B and 4B.

Among all identified QTL for LR, the QLR.IPBB-3B.1 lo-
cated on the 3B chromosome was detected in the South-East
region during the peak of infection. It had demonstrated the
highest 7.8 LOD score among the others and explained 27 %
of the phenotypic variances. Other QTL demonstrated LOD
score in the range from 3.3 up to 6.0 and phenotypic variances
from 11 to 20 %.

Nine tentative QTL for SR were detected in this study (Fig. 3,
see Supplementary 1). All of them are distributed among six
chromosomes, where 3B chromosome contained three QTL,
6B chromosome —two QTL while remaining QTL were spread
in chromosomes 1A, 2B, 2D, and 4A. The majority of QTL
for SR resistance was identified in the North region, while
there was only one QTL identified in the South-East. The
highest LOD score was observed for two QTL— OSR.IPBB-2D
and OSR.IPBB-6B.1 — on chromosomes 2D and 6B, and ex-
plained 22 and 20 % of the stem rust resistance variances,
respectively.

Discussion

Identified QTL for LR resistance and their comparison to
previously LR mapping studies. The literature survey sug-
gests that LR pathotypes of infections, as well as the sources
of infection and wheat genes that are effective against them,
are different in two regions. For example, in South-East
Kazakhstan, seven Lr genes were reported to be highly ef-
fective (OR, 1-5 MR) — Lr9, Lri2, Lri3, Lri8, Lr19, Lr24,
and Lr37 (Koyshybaev, 2018). In the North, the difference in
Lr genes effectiveness was observed even between two sites.
For Akmola site, there were nine genes with good effective-
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' — [y ' 495 Tdurum_contig55610_784
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564 Tdurdm,_Gontigb0052_184 kY 50.7 BS00086847_51 2 63.4 TA004602-1630 58.3 BS00077914_51
576 /5 tpb0024i15_1754 ™ 60.8 BS00051826_51 2 677\ RAC875_rep_c119471_174 61.2 14 RAC875_c31358_214
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Fig. 2. Genetic map with QTL for leaf rust (LR) resistance detected using mapping population ‘Pamyati Azieva x Paragon’ and previously mapped
Lr genes.

In each case, the genomic region containing the QTL is indicated by the vertical bar on the right and followed by the name of the QTL. SNP markers are indicated
on the right, and their genetic positions (cM) are shown on the left. Peak marker for each QTL is highlighted in bold.
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Fig. 3. QTL for stem rust (SR) resistance identified in mapping population ‘Pamyati AzievaxParagon’ and previously mapped
Srgenes.

In each case, the genomic region containing the QTL is indicated by the vertical bar on the right and followed by the name of the QTL.
SNPs are indicated on the right, and their genetic positions (cM) are shown on the left. Peak marker for each QTL is highlighted in bold.
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ness — Lr9, Lri2, Lri3, Lr19, Lr23, Lr24, Lr28, Lr33, and
Lr35, while for North Kazakhstan site only three genes were
highly effective — Lr9, Lr28, and Lr36 (Koyshybaev, 2018).
Here, ten QTL for LR were identified for two studied regions,
and there were no matchings between them. Differences in
QTL identification in North and South-East regions agreed
with the data on differences in the composition of the patho-
gen populations between these regions (Koyshybaev, 2018).
All comparison information concerning candidate genes and
previously mentioned resistance QTL in the literature is pre-
sented in Supplementary 2.

One of two QTL identified in the North (OLR.IPBB-1D)
is located in the long arm of 1D chromosome. The 1D chro-
mosome has four Lr genes (see Supplementary 2) positioned
on the far distances from the QLR.IPBB-1D. The second
association found in the North region was QLR.IPBB-3B.2.
The locus was within the interval of 38.0-54.0 cM on the
3B chromosome, near the locus QLR.IPBB-3B.3, which was
identified in the South-East study. The QLR.IPBB-3B.2 was
distantly located from both Lr27 and Lr74 genes (see Fig. 2,
Supplementary 2), but in close proximity to QTL described
earlier (Gao et al., 2016; Zhang et al., 2017). Interestingly,
none of Lr genes or QTL on chromosomes 1D and 3B had
been described as effective in Kazakhstan before.

Field assessment of LR resistance in South-East allowed
revealing eight QTL in six different chromosomes (see Supple-
mentary 2). These QTL can be formally separated into two
groups: the first group has QTL overlapping with previously
identified and well described L7 genes, and the second group
has QTL identified in this study. The first group is presented
by two QTL on 2B and 3B chromosomes. On 2B chromo-
some, the OLR.IPBB-2B has similar positions with L»35 and
Lr50 (see Supplementary 2). Also, Gao and colleagues (Gao
et al., 2016) and Zhang with co-authors (Zhang et al., 2017)
identified similar QTL for LR in this part of the genome. The
Lr35 was previously described as highly effective in East,
West, and North Kazakhstan regions (Koyshybaev, 2018).
The second QTL QLR.IPBB-3B.1 is positioned in the interval
1.1-15.0 cM of 3B chromosome, where it possibly overlaps
with Lr74 located approximately 4.9 cM away from xgwm533
at 10.6 cM (Quarrie et al., 2005). Also, Lr27 is another previ-
ously reported gene located in this region (see Supplemen-
tary 2). Notably, QLR.IPBB-3B.1 was the most significant
QTL for LR identified in this study with the highest R2 and
additive effect.

The remaining six QTL for LR belong to the second group
of putatively new genetic factors for studied environments.
The first QTL from this group is QLR.IPBB-1B that located
on the 1B chromosome. There are two QTL for LR described
by Kumar and colleagues (Kumar et al., 2013) and Gao with
co-authors (Gao et al., 2016) that were positioned in the same
vicinity as the OLR.IPBB-1B. The QLR.IPBB-24 was the only
identified association on 2A chromosomes in this study, and
it was mapped in the interval 86.0-110.1 cM. The interval
of the OLR.IPBB-24 is near to genetic positions of QTL for
LR resistance that were described in previous studies (Kumar
etal.,2013; Gaoetal., 2016). The OLR.IPBB-34 was located
in the interval 100.0-133.1 ¢cM, and it is coinciding with the
position of QTL for LR resistance described by Chu with
colleagues (Chu et al., 2009). On the 3B chromosome, two
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QTL for LR were identified in this group of study in South-
East region. These are OLR.IPBB-3B.3 and QLR.IPBB-3B.4
positioned in 61.2-78.1 and 88.2-102.3 cM intervals, re-
spectively. It appears that QTL for LR in these regions were
previously identified (Kumar et al., 2013; Muhammad et al.,
2018). Finally, the OLR.IPBB-4B was located in the interval
82.9-101.8 cM, which is overlapping with the position of
QTL for LR resistance described by Gao and co-authors (Gao
etal., 2016).

As all identified genetic factors associated with the resis-
tance to LR in this study were genetically positioned with
associations identified in recent GWAS for LR resistance (Gao
et al., 2016; Muhammad et al., 2018), it is strong indications
that QTL identified in this study may play an important role
in local breeding projects.

Identified QTL for SR resistance and their comparison
to previously SR mapping studies. Unlike in LR study,
where the majority of QTL for SR were found based on the
data from South-East, in SR study almost all QTL (8 out of 9)
were identified in the North region. The only SR resistant
locus form the South-East was OSR./PBB-3B.2 in the interval
98.3-128.3 cM on the 3B chromosome, and it was signifi-
cantly far from Sr genes mapped in this linkage group (see
Supplementary 2). Other QTL for SR resistance can also be
formally divided into two groups, likewise in LR study. The
first group of marker-trait associations includes four QTL.
The OSR.IPBB-14 was located in the interval 0-26.0 cM
at a relatively short distance from the Sr/RS4™g° mapped at
40.0 cM (Yu et al., 2014), and two QTL described in other
studies (Yu et al., 2012; Bajgain et al., 2016). The next QTL
OSR.IPBB-2B lies in the interval 73.8-108.2 ¢cM and overlaps
with three mapped Sr genes (Sr9, Sr 36, and Sr40) and adjoins
Sr28 (see Fig. 3), as well as several QTL for SR from literature
(Yuet al., 2012; Bajgain et al., 2015; Edae et al., 2018). Two
ofthese genes — Sr9 and Sr36 — were distinguished as effective
against the Western Siberian population of SR (Shamanin et
al., 2011). On the 3B chromosome, there are three identified
QTL for SR, but only OSR.IPBB-3B.1 was positioned in the
vicinity of previously mapped gene Sr2, and QTL for SR re-
sistance described by Elbasyoni with co-authors (Elbasyoni
et al., 2017). Notably, the Sr2 is the most important disease
resistance gene to be deployed in modern plant breeding and
provided partial resistance for many years over large areas and
under high and prolonged disease pressure in the field (Ellis
etal., 2014). Finally, the OSR.IPBB-6B.2 was positioned just
in 2.1 cM from Sril (see Supplementary 2).

The second group of QTL for SR resistance included as-
sociations that previously were not mentioned in Kazakhstan.
This group was comprised of five QTL located on chromo-
somes 2D, 3B, 4A, and 6B. The region 71.1-126.0 cM of
chromosome 2D, which is associated with the OSR.IPBB-2D,
has not been mentioned in connection with previous QTL for
SR mapping studies. The OSR.IPBB-2D demonstrated the
highest impact on the SR resistance in this study, explaining
22 % of the variation. Also, on the 3B chromosome, there is
OSR.IPBB-3B.3, which is another presumably novel QTL
for SR resistance in Kazakhstan. The QSR.IPBB-4A4 on the
4A chromosome resembles two SR-associated loci described
in previous studies (see Supplementary 2) (Basnet etal., 2015),
but it has no candidate Sr genes nearby. The remaining QTL
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OSR.IPBB-6B.1 was located in the short arm of the 6B chro-
mosome. It seems that the position of the OSR.IPBB-6B.1
is matching the position of QTL for SR resistance that was
previously described by Yu with co-authors (Yu et al., 2012).

Conclusion

The constructed RILs MP ‘Pamyati Azievax Paragon’ was
very efficient in the identification of QTL for LR and SR re-
sistance in bread wheat. The MP consisted of 98 RILs and
analyzed by using 4595 polymorphic SNP markers densely
populated all 21 wheat chromosomes. Field trials output sug-
gested a negative correlation between LR and SR severity and
key yield components in the North and South-East regions of
Kazakhstan. The CIM method allowed the identification of
ten QTL for LR and nine QTL SR resistance associated with
resistance to these two rust diseases. The comparative analysis
of the findings in this study and reports from previously pub-
lished data suggested that the majority of identified QTL were
well described in existed literature, confirming the robustness
of obtained results. Nevertheless, two QTL for SR identified in
the North region of the country were never described before,
and they are presumably novel genetic factors. Overall, identi-
fied QTL both for LR and SR resistances in newly developed
MP ‘Pamyati Azieva x Paragon’ can be efficiently used in local
breeding projects for higher yield in bread wheat.
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